
1CMSC 412 – S16 (lect 12)

Announcements

� Reading

– 8.6-8.8, 9.1-9.4

� Midterm #1

– Thursday

� Project #3

– Is Due March 22th

2CMSC 412 – S16 (lect 12)

Sharing Memory

� Pages can be shared
– several processes may share the same code or data

– several pages can be associated with the same page frame

– given read-only data, sharing is always safe

� when writes occur, decide if processes share data
– operating systems often implement “copy on write” - pages

are shared until a process carries out a write

• when a shared page is written, a new page frame is
allocated

• writing process owns the modified page

• all other sharing processes own the original page

– page could be shared

• processes use semaphores or other means to coordinate
access

3CMSC 412 – S16 (lect 12)

Page Sharing

Page

Directory

Page

Directory
Page Table

Page

Frames
Page Table

P1 P2

Shared

Pages

4CMSC 412 – S16 (lect 12)

Inverted Page Tables
� Solution to the page table size problem

� One entry per page frame of physical memory

<process-id, page-number>

– each entry lists process associated with the page and the page
number

– when a memory reference:

• <process-id,page-number,offset>occurs, the inverted page
table is searched (usually with the help of a hashing
mechanism)

• if a match is found in entry i in the inverted page table, the
physical address <i,offset> is generated

– The inverted page table does not store information about pages
that are not in memory

• page tables are used to maintain this information

• page table need only be consulted when a page is brought in
from disk

5CMSC 412 – S16 (lect 12)

What Happens when a virtual address
has no physical address?

� called a page fault

– a trap into the operating system from the hardware

� caused by: the first use of a page

– called demand paging

– the operating system allocates a physical page and the
process continues

– read code from disk or init data page to zero

� caused by: a reference to an address that is not valid

– program is terminated with a “segmentation violation”

� caused by: a page that is currently on disk

– read page from disk and load it into a physical page, and
continue the program

� causde by: a copy on write page

6CMSC 412 – S16 (lect 12)

– NOACCESS: attempts to read, write or execute will cause an access
violation

– READONLY: attempts to write or execute memory in this region cause
an access violation

– READWRITE: attempts to execute memory in this region cause an
access violation

– EXECUTE: Attempts to read or write memory in this region cause an
access violation

– EXECUTE_READ: Attempts to write to memory in this region cause an
access violation

– EXECUTE_READ_WRITE: Do anything to this page

– WRITE_COPY: Attempts to write will cause the system to give a
process its own copy of the page. Attempts to execute cause access
violation

– EXECUTE_WRITE_COPY: Attempts to write will cause the system to
give a process its own copy of a page. Can’t cause an access violation

OS Protection attributes (Win32)

7CMSC 412 – S16 (lect 12)

Handling a page fault

1) Check if the reference is valid

– if not, terminate the process

2) Find a page frame to allocate for the new process

– for now we assume there is a free page frame.

3) Schedule a read operation to load the page from disk

– we can run other processes while waiting for this to complete

4) Modify the page table entry to the page

5) Restart the faulting instruction

– hardware normally will abort the instruction so we just return
from the trap to the correct location.

8CMSC 412 – S16 (lect 12)

Page Fault – Page is Paged out

Page

Directory
Page Table

Page

Frames

P1

Reference

To this page 1) Fault

2) Read from Disk

3) Make

Entry

4) Continue

9CMSC 412 – S16 (lect 12)

Page State (hardware view)
� Page frame number (location in memory or on disk)

� Valid Bit
– indicates if a page is present in memory or stored on disk

� A modify or dirty bit
– set by hardware on write to a page

– indicates whether the contents of a page have been modified
since the page was last loaded into main memory

– if a page has not been modified, the page does not have to
be written to disk before the page frame can be reused

� Reference bit
– set by the hardware on read/write

– cleared by OS

– can be used to approximate LRU page replacement

� Protection attributes
– read, write, execute

10CMSC 412 – S16 (lect 12)

What happens when we fault and there
are no more physical pages?

� Need to remove a page from main memory

– if it is “dirty” we must store it to disk first.

• dirty pages have been modified since they were last
stored on disk.

� How to we pick a page?

– Need to choose an appropriate algorithm

• should it be global?

• should it be local (one owned by the faulting process)

