
1CMSC 412 – F16 (lect 9)

Announcements

� Reading

– Today

• 8.1-8.3, 8.6 (6th Ed)

• 7.1-7.3, 7.6 (8th Ed)

� Project #2 is due next Th at 5:00 PM (3/3/16)

� Midterm #1 is 3/10/16 in class

2CMSC 412 – F16 (lect 9)

Problem from last time continued

� Reviewed more examples of student work from last

time

3CMSC 412 – F16 (lect 9)

Variables

� Binary semaphore mutex=1

� Counting semaphore reader = 0

� Binary semaphore writer = 0

� Shared int nReaders = 0

� Shared int wReaders = 0

� Shared int nWriters = 0

� Shared int wWriters = 0

4CMSC 412 – F16 (lect 9)

� Writers execute this code:

while (1) {

P(mutex);

if (nReader + wReader + nWriter == 0) {

nWriter++;

V(mutex);

} else {

wWriter++;

V(mutex);

P(writer);

}

// Write operation;

P(mutex);

NWriter = 0;

If (wReaders > 0) {

Temp = min(wReaders,5)

for i = 1 to temp {

V(readers)

nReaders++;

wReaders--;

}

} else if (wWriters > 0) {

wWriters--;

nWriters++; V(writer);

} V(mutex);

}

� Readers execute this code:

while (1) {

P(mutex)

if (nWriters + wWriter == 0 & nReader < 5) {

nReaders++;

V(mutex);

} else {

wReaders++;

V(mutex);

P(reader);

}

// Read operation;

P(mutex);

nReaders--;

if (wWriters > 0 & nReaders == 0) {

wWriters--;

nWriters++;

V(writer);

} else if (wReaders > 0 & wWriters == 0) {

nReaders++;

wReaders--;

V(reader);

}

V(mutex);

}

5CMSC 412 – F16 (lect 9)

Deadlocks

� System contains finite set of resources
– memory space

– printer

– tape

– file

– access to non-reentrant code

� Process requests resource before using it,
must release resource after use

� Process is in a deadlock state when every
process in the set is waiting for an event that
can be caused only by another process in the
set

6CMSC 412 – F16 (lect 9)

Formal Deadlocks

� 4 necessary deadlock conditions:

– Mutual exclusion - at least one resource must be

held in a non-sharable mode, that is, only a single

process at a time can use the resource. If another

process requests that resource, the requesting

process must be delayed until the resource is

released

– Hold and wait - There must exist a process that is

holding at least one resource and is waiting to

acquire additional resources that are currently

held by other processors

7CMSC 412 – F16 (lect 9)

Formal Deadlocks

– No preemption: Resources cannot be preempted;

a resource can be released only voluntarily by the

process holding it, after that process has

completed its task

– Circular wait: There must exist a set {P0,...,Pn} of

waiting processes such that P0 is waiting for a

resource that is held by P1, P1 is waiting for a

resource held by P2 etc.

� Note that these are not sufficient conditions

8CMSC 412 – F16 (lect 9)

Detecting Deadlock Algorithm

� Variables:

n is the number of processes

m is the number of resource types
– Available - vector of length m indicating the number of available

resources of each type

– Work - vector of length m indicating the number of currently
available resources of each type

– Allocation - n by m matrix defining number of resources of each
type currently allocated to each process

– Request is an m x n matrix indicating the number of additional
resources requested by each process

– Finish is a vector of length n (processes) indicating if we are
finished checking that process

9CMSC 412 – F16 (lect 9)

Detecting Deadlock

1. Work = Available;

foreach i in n

if any of Allocation[i,*] != 0 Finish[i] = false

else Finish[i] = true;

2. Find an i such that Finish[i] = false and

Request[I,*] <= Work[i,*] if no such i, go to 4

3. Work[i,*] += Allocation[i,*] ;

Finish[i] = true;

goto step 2

4. If Finish[i] = false for some i, system is in deadlock

Note: this requires m x n2 steps

10CMSC 412 – F16 (lect 9)

Example

� Two resources R1 & R2

– one instance of R1 and two of R2

� Three process A, B, C

� Initial State:

– A has R2, B has R1 and C has R2

– B wants R2 and C wants R1

A B C

R1 0 1 0

R2 1 0 1

A B C

R1 0 0 1

R2 0 1 0

Allocation Wants

A B C

False False False

Finish

R1 0

R2 0

Work

