Announcements

e Reading

— Today
« 8.1-8.3, 8.6 (61" Ed)
« 7.1-7.3, 7.6 (8! Ed)

e Project #2 is due next Th at 5:00 PM (3/3/16)
e Midterm #1 is 3/10/16 in class

CMSC 412 - F16 (lect 9)




Problem from last time continued

e Reviewed more examples of student work from last
time

CMSC 412 —F16 (lect 9)




Variables

Binary semaphore mutex=1
Counting semaphore reader =0
Binary semaphore writer = 0
Shared int nReaders = 0
Shared int wReaders = 0
Shared int nWriters = 0

Shared int wWriters = 0

CMSC 412 —F16 (lect 9)




° Writers execute this code:
while (1) {
P(mutex);

if (nReader + wReader + nWriter == 0) {

nWriter++;
V(mutex);

} else {
wWriter++;
V(mutex);

P(writer);

}

/I Write operation;

P(mutex);

NWriter = 0;

If (wReaders > 0) {

Temp = min(wReaders,5)
fori=1totemp {
V(readers)
nReaders++;
wReaders--;
}

} else if (WWriters > 0) {
wWriters--;
nWriters++; V(writer);

} V(mutex);

CMSC 412 - F16 (lect 9)

Readers execute this code:

while (1) {

P(mutex)
if (NnWriters + wWriter == 0 & nReader < 5) {
nReaders++;
V(mutex);
} else {
wReaders++;
V(mutex);
P(reader);
}
/I Read operation;
P(mutex);
nReaders--;
if (WWriters > 0 & nReaders == 0) {
wWriters--;
nWriters++;
V(writer);
} else if (WReaders > 0 & wWriters == 0) {
nReaders++;
wReaders--;
V(reader);
}

V(mutex);




Deadlocks

e System contains finite set of resources
— memory space
— printer
— tape
— file
— access to non-reentrant code

e Process requests resource before using it,
must release resource after use

e Process is in a deadlock state when every
process in the set is waiting for an event that
can be caused only by another process in the

set

CMSC 412 —F16 (lect 9)




Formal Deadlocks

e 4 necessary deadlock conditions:

— Mutual exclusion - at least one resource must be
held in a non-sharable mode, that is, only a single
process at a time can use the resource. If another
process requests that resource, the requesting
process must be delayed until the resource is
released

— Hold and wait - There must exist a process that is
holding at least one resource and is waiting to
acquire additional resources that are currently
held by other processors

CMSC 412 - F16 (lect 9)




Formal Deadlocks

— No preemption: Resources cannot be preempted,;
a resource can be released only voluntarily by the
process holding it, after that process has
completed its task

— Circular wait: There must exist a set {PO,...,Pn} of
waiting processes such that PO is waiting for a
resource that is held by P1, P1 is waiting for a
resource held by P2 etc.

e Note that these are not sufficient conditions

CMSC 412 - F16 (lect 9)




Detecting Deadlock Algorithm

e Variables:
n is the number of processes

m is the number of resource types

— Available - vector of length m indicating the number of available
resources of each type

— Work - vector of length m indicating the number of currently

ava

ilable resources of each type

— Allocation - n by m matrix defining number of resources of each
type currently allocated to each process

— Request is an m x n matrix indicating the number of additional
resources requested by each process

— Fini

sh is a vector of length n (processes) indicating if we are

finished checking that process

CMSC 412 - F16 (lect 9)




Detecting Deadlock
1. Work = Available;
foreachiinn
if any of Allocation[i,*] != 0 Finish[i] = false
else Finish[i] = true;
2. Find an 7 such that Finish[i] = false and
Request[l,”] <= Work]i,*] if no such i, go to 4
3. Work[i,*] += Allocation[i,*] ;
Finishli] = true;
goto step 2
4. If Finish[i] = false for some I, system is in deadlock

Note: this requires m x n? steps

CMSC 412 —F16 (lect 9)




Example

e Two resources R, & R,
— one instance of R, and two of R,

e Three process A, B, C

e Initial State:
— A has R,,B has R, and C has R,
— B wants R, and C wants R,

A B C A B
R 0 1 0 R, O 0
R, 1 0 1 R, 0 1
Allocation Wants
A B C
False False False
Finish

CMSC 412 - F16 (lect 9)

R, 0
R, 0
Work

10




