Announcements

e Reading

— Today
« 8.1-8.3, 8.6 (61" Ed)
« 7.1-7.3, 7.6 (8! Ed)

e Project #2 is due next Th at 5:00 PM (3/3/16)
e Midterm #1 is 3/10/16 in class
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Problem from last time continued

e Reviewed more examples of student work from last
time
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Variables

Binary semaphore mutex=1
Counting semaphore reader =0
Binary semaphore writer = 0
Shared int nReaders = 0
Shared int wReaders = 0
Shared int nWriters = 0

Shared int wWriters = 0
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° Writers execute this code:
while (1) {
P(mutex);

if (nReader + wReader + nWriter == 0) {

nWriter++;
V(mutex);

} else {
wWriter++;
V(mutex);

P(writer);

}

/I Write operation;

P(mutex);

NWriter = 0;

If (wReaders > 0) {

Temp = min(wReaders,5)
fori=1totemp {
V(readers)
nReaders++;
wReaders--;
}

} else if (WWriters > 0) {
wWriters--;
nWriters++; V(writer);

} V(mutex);
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Readers execute this code:

while (1) {

P(mutex)
if (NnWriters + wWriter == 0 & nReader < 5) {
nReaders++;
V(mutex);
} else {
wReaders++;
V(mutex);
P(reader);
}
/I Read operation;
P(mutex);
nReaders--;
if (WWriters > 0 & nReaders == 0) {
wWriters--;
nWriters++;
V(writer);
} else if (WReaders > 0 & wWriters == 0) {
nReaders++;
wReaders--;
V(reader);
}

V(mutex);




Deadlocks

e System contains finite set of resources
— memory space
— printer
— tape
— file
— access to non-reentrant code

e Process requests resource before using it,
must release resource after use

e Process is in a deadlock state when every
process in the set is waiting for an event that
can be caused only by another process in the

set
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Formal Deadlocks

e 4 necessary deadlock conditions:

— Mutual exclusion - at least one resource must be
held in a non-sharable mode, that is, only a single
process at a time can use the resource. If another
process requests that resource, the requesting
process must be delayed until the resource is
released

— Hold and wait - There must exist a process that is
holding at least one resource and is waiting to
acquire additional resources that are currently
held by other processors
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Formal Deadlocks

— No preemption: Resources cannot be preempted,;
a resource can be released only voluntarily by the
process holding it, after that process has
completed its task

— Circular wait: There must exist a set {PO,...,Pn} of
waiting processes such that PO is waiting for a
resource that is held by P1, P1 is waiting for a
resource held by P2 etc.

e Note that these are not sufficient conditions
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Detecting Deadlock Algorithm

e Variables:
n is the number of processes

m is the number of resource types

— Available - vector of length m indicating the number of available
resources of each type

— Work - vector of length m indicating the number of currently

ava

ilable resources of each type

— Allocation - n by m matrix defining number of resources of each
type currently allocated to each process

— Request is an m x n matrix indicating the number of additional
resources requested by each process

— Fini

sh is a vector of length n (processes) indicating if we are

finished checking that process
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Detecting Deadlock
1. Work = Available;
foreachiinn
if any of Allocation[i,*] != 0 Finish[i] = false
else Finish[i] = true;
2. Find an 7 such that Finish[i] = false and
Request[l,”] <= Work]i,*] if no such i, go to 4
3. Work[i,*] += Allocation[i,*] ;
Finishli] = true;
goto step 2
4. If Finish[i] = false for some I, system is in deadlock

Note: this requires m x n? steps
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Example

e Two resources R, & R,
— one instance of R, and two of R,

e Three process A, B, C

e Initial State:
— A has R,,B has R, and C has R,
— B wants R, and C wants R,

A B C A B
R 0 1 0 R, O 0
R, 1 0 1 R, 0 1
Allocation Wants
A B C
False False False
Finish
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R, 0
R, 0
Work

10




