
1CMSC 412 – S16 (lect7)

Announcements

� Program #2

– Due 3/3 at 5:00 pm

� Reading

– Finish scheduling

– Process Synchronization:

• Chapter 6 (8th Ed) or Chapter 7 (6th Ed)

2CMSC 412 – S16 (lect7)

In Class Exercise

� Give each group 15 minutes

– to finish up their scheduling algorithm.

– The algorithm should take a list of runnable processes and
pick one to run next

– Any criteria can be used

– May keep data about processes, but need to describe what it
is

� Have each group describe their algorithm

– Ask the others if it does what they claim it does

– Offer your own critiques of the algorithm

– If one of the groups repeats another, still have them describe
it

• Look for any differences in how it achieves its goal

3CMSC 412 – S16 (lect7)

Scheduling criteria
� Per processor, or system oriented

– CPU utilization

• maximize, to keep as busy as possible

– throughput

• maximize, number of processes completed per time unit

� Per process, or user oriented

– turnaround time

• minimize, time of submission to time of completion.

– waiting time

• minimize, time spent in ready queue - affected solely by
scheduling policy

– response time

• minimize, time to produce first output

• most important for interactive OS

4CMSC 412 – S16 (lect7)

Short-term scheduling algorithms

� First-Come, First-Served (FCFS, or FIFO)

– as process becomes ready, join Ready queue, scheduler
always selects process that has been in queue longest

– better for long processes than short ones

– favors CPU-bound over I/O-bound processes

– need priorities, on uniprocessor, to make it effective

5CMSC 412 – S16 (lect7)

Algorithms (cont.)

� Round-Robin (RR)
– use preemption, based on clock - time slicing

• generate interrupt at periodic intervals

– when interrupt occurs, place running process in Ready
queue, select next process to run using FCFS

– what’s the length of a time slice

• short means short processes move through quickly, but
high overhead to deal with clock interrupts and
scheduling

• guideline is time slice should be slightly greater than time
of “typical job” CPU burst

– problem dealing with CPU and I/O bound processes

6CMSC 412 – S16 (lect7)

Priority Based Scheduling

� Priorities

– assign each process a priority, and scheduler always
chooses process of higher priority over one of lower priority

� More than one ready queue, ordered by priorities
RQ0

CPU

RQ1

RQn

Blocked queue

...Admit

Event

Occurs

Event Wait

Preemption

Dispatch Release

7CMSC 412 – S16 (lect7)

Priority Algorithms

� Fixed Queues

– processes are statically assigned to a queue

– sample queues: system, foreground, background

� Multilevel Feedback

– processes are dynamically assigned to queues

– penalize jobs that have been running longer

– preemptive, with dynamic priority

– have N ready queues (RQ0-RQN),

• start process in RQ0

• if quantum expires, moved to i + 1 queue

8CMSC 412 – S16 (lect7)

Feedback scheduling (cont.)

– problem: turnaround time for longer processes

• can increase greatly, even starve them, if new short jobs
regularly enter system

– solution1: vary preemption times according to queue

• processes in lower priority queues have longer time slices

– solution2: promote a process to higher priority queue

• after it spends a certain amount of time waiting for service in its
current queue, it moves up

– solution3: allocate fixed share of CPU time to jobs

• if a process doesn’t use its share, give it to other processes

• variation on this idea: lottery scheduling

– assign a process “tickets” (# of tickets is share)

– pick random number and run the process with the winning
ticket.

9CMSC 412 – S16 (lect7)

UNIX System V

� Multilevel feedback, with
– RR within each priority queue

– 10ms second preemption

– priority based on process type and execution history, lower
value is higher priority

� priority recomputed once per second, and scheduler
selects new process to run

� For process j, P(i) = Base + CPU(i-1)/2 + nice
– P(i) is priority of process j at interval i

– Base is base priority of process j

– CPU(i) = U(i)/2 + CPU(i-1)/2

• U(i) is CPU use of process j in interval i

• exponentially weighted average CPU use of process j
through interval i

– nice is user-controllable adjustment factor

10CMSC 412 – S16 (lect7)

UNIX (cont.)

� Base priority divides all processes into (non-

overlapping) fixed bands of decreasing priority levels

– swapper, block I/O device control, file manipulation,
character I/O device control, user processes

� bands optimize access to block devices (disk), allow

OS to respond quickly to system calls

� penalizes CPU-bound processes w.r.t. I/O bound

� targets general-purpose time sharing environment

11CMSC 412 – S16 (lect7)

Example: Windows NT/XP

� Target:
– single user, in highly interactive environment

– a server

� preemptive scheduler with multiple priority levels

� flexible system of priorities, RR within each, plus
dynamic variation on basis of current thread activity
for some levels

� 2 priority bands, real-time and variable, each with 16
levels
– real-time ones have higher priority, since require immediate

attention(e.g. communication, real-time task)

12CMSC 412 – S16 (lect7)

Windows NT/XP (cont.)

� In real-time class, all threads have fixed priority that

never changes

� In variable class, priority begins at an initial value,

and can change, up or down

– FIFO queue at each level, but thread can switch queues

� Dynamic priority for a thread can be from 2 to 15

– if thread interrupted because time slice is up, priority lowered

– if interrupted to wait on I/O event, priority raised

– favors I/O-bound over CPU-bound threads

– for I/O bound threads, priority raised more for interactive
waits (e.g. keyboard, display) than for other I/O (e.g. disk)

13CMSC 412 – S16 (lect7)

Multi-Processor Scheduling

� Multiple processes need to be scheduled together

– Called gang-scheduling

– Allowing communicating processes to interact w/o/ waiting

� Try to schedule processes back to same processor

– Called affinity scheduling

• Maintain a small ready queue per processor

• Go to global queue if nothing local is ready

14CMSC 412 – S16 (lect7)

Readers/Writers Problem

� Data area shared by processors

� Some processes read data, others write data

– Any number of readers my simultaneously read the data

– Only one writer at a time may write

– If a writer is writing to the file, no reader may read it

� Two of the possible approaches

– readers have priority or writers have priority

15CMSC 412 – S16 (lect7)

Readers have Priority
Semaphore wsem = 1, x = 1;
reader()
{
repeat

P(x);
readcount = readcount + 1;
if readcount = 1 then P (wsem);

V(x);
READUNIT;
P(x);

readcount = readcount - 1;
if readcount = 0 V(wsem);

V(x);
forever

};

writer()
{

repeat
P(wsem);
WRITEUNIT;
V(wsem)

forever
}

16CMSC 412 – S16 (lect7)

Comments on Reader Priority

� semaphores x,wsem are initialized to 1

� note that readers have priority - a writer can gain

access to the data only if there are no readers (i.e.

when readcount is zero, signal(wsem) executes)

� possibility of starvation - writers may never gain

access to data

