
CMSC 412 Midterm #1 (Spring 2016)

1.) (20 points) Define and explain the following terms:

a) OS Kernel

The most protected part of the Operating system. Generally runs at ring 0

and includes handling scheduling and interrupts.

b) Multi-level feedback queue scheduler

A scheduling approach that uses different priority queues to manage jobs.

Based on job behavior (such as not using a full scheduling quantum or waiting

time in a queue) jobs are moved between queues.

c) Spawn system call (compared to fork)

Creates a new process and specifies the new program to run. It differs from

fork which simply creates a copy of the current running process (and thus the

same program).

d) Dispatcher

Also called the shorterm scheduler. Responsible for selecting a job to run

and switching the state of running processes to make the new process run

(involves saving/restoring registers and other machine state).

2.) (20 points) - Synchronization

Given an implementation of general (counting) semaphores, implement bounded counting
semaphores where each semaphore is declared with initial values, but also a maximum value. A
V operation on a bounded counting semaphore that is at its maximum value should return
immediately and not change the state of the system. P works the same as a general semaphore.

CreateBoundedSemaphore(int max, int initialValue):

 Shared int s.max = max

 Shared int s.curr = initialValue

 Semaphore s.mutex = 1;

 Semaphore s.wait = initialValue;

Pbounded

P(s.mutex)

s.curr—

V(s.mutex)

P(s.wait)

Vbounded

 P(s.mutex)

 If (s.curr < s.max)

 V(s.wait)

 s.curr++

 V(s.mutex)

3.) (16 Points) Deadlock

a) (7 points) With multiple instances of a resource, why is circular wait only a necessary and
not a sufficient condition for deadlock?

There could be another process (not involved in the circular wait) that could

release a second instance of one of the resources involved in the circular

wait and thus permit one of the waiting processes to proceed.

b) (9 points) Is this system in a safe state? If so show a safe sequence for it.

Three resources: A, B, C (10, 5, 7 instances each). The snapshot of the system:

 Alloc Max Avail Need

 A B C A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2 7 4 3

P1 2 0 0 3 2 2 1 2 2

P2 3 0 2 9 0 2 6 0 0

P3 2 1 1 2 2 2 0 1 1

P4 0 0 2 4 3 3 4 3 1

Unsafe/impossible Sequences:

(24) P0 *

(06) P1 P0 *

(06) P1 P2 *

(02) P1 P4 P0 *

(02) P1 P4 P2 *

(24) P2 *

(06) P3 P0 *

(06) P3 P2 *

(02) P3 P4 P0 *

(02) P3 P4 P2 *

(24) P4 *

Save Sequences (from class P1 P3 P0 P2 P4)

Others:

(06) P1 P3 *

(02) P1 P4 P3 *

(06) P3 P1 *

(02) P3 P4 P1 *

Full credit for YES, and then any of the 16 safe sequences.

4.) (12 points) Policy vs. Mechanism: Circle if the following are policies or mechanisms.

Policy Mechanism Users must change their passwords every 60 days
Policy Mechanism An operating system uses a timer to reclaim the cores from user processes
Policy Mechanism Processes owned by root have higher priority than normal user processes
Policy Mechanism User’s files are readable only by that user and their professor
Policy Mechanism An operating system includes semaphore system calls for synchronization
Policy Mechanism A list of runnable processes is stored in a heap

5.) (14 points) Process Manipulation

a) In GeekOS, the kill system call could not call Exit directly. However, the setup_Frame

code for handling a SIGKILL could call Exit, Why?

Exit terminates the currently running process. Setup_Frame is running

in the context of the target process, but the kill system call is not

necessarily running in the target context.

b) In GeekOS, why is turning off interrupts (i.e. calling Disable_Interrupts) not enough

to ensure atomic access to a critical section?

In a multi-core operating system, activities are still happening on the

other cores even if interrupts are disabled.

6.) (20 points) - project

a) In project #2, Complete_Handler only needed to POP the signal number and not the

address of the "signal trampoline" (supplied by Sys_RegDeliver) even though

Setup_Frame pushed them both. Why?

The address of the signal trampoline was popped by the return instruction of

the signal handler (which invoked the signal trampoline function)

b) In projects 0 through 2, even if you didn’t care about memory protection for user
processes, why is it necessary to have the base and limit registers in the project for user
processes?

The base register also allows the address of user program to start at 0 and

thus permits them to be loaded into any memory location available.

c) In GeekOS, you want to add a system call that returns the current core a process is
running on. How would your system call figure this out?

Look in g_currentThread. Each element of the array is the currently running

process on a specific core (index 0 is core 0, …). A process can determine

it’s current thread struct from the macro CURRENT_THREAD).

