
1CMSC 412 – S04 (Final Review)

Announcements

 Final is Thursday at 8:00 in CSIC 2107
 Course evaluations are on the web, please complete

2CMSC 412 – S04 (Final Review)

What is an Operating System?

 Resource Manager
– Resources include: CPU, memory, disk, network
– OS allocates and de-allocates these resources

 Virtual Machine
– provides an abstraction of a larger (or just different machine)
– Examples:

• Virtual memory - looks like more memory
• Java - pseudo machine that looks like a stack machine
• IBM VM - a complete virtual machine (can boot multiple

copies of an OS on it)

 Multiplexor
– allows sharing of resources and protection
– motivation is cost: consider a $40M supercomputer

3CMSC 412 – S04 (Final Review)

What is an OS (cont)?

 Provider of Services
– includes most of the things in the above definition
– provide “common” subroutines for the programmer

• windowing systems
• memory management

 The software that is always loaded/running
– generally refers to the Os kernel.

• small protected piece of software

 All of these definitions are correct
– but not all operating have all of these features

4CMSC 412 – S04 (Final Review)

System Calls

 Provide the interface between application programs
and the kernel

 Are like procedure calls
– take parameters
– calling routine waits for response

 Permit application programs to access protected
resources

load r0, x
system call 10

User Program Operating System
(kernel)

Code for
sys call 10

register r0

5CMSC 412 – S04 (Final Review)

System Call Mechanism

 Use numbers to indicate what call is made
 Parameters are passed in registers or on the stack
 Why do we use indirection of system call numbers

rather than directly calling a kernel subroutine?
– provides protection since the only routines available are

those that are export
– permits changing the size and location of system call

implementations without having to re-link application
programs

6CMSC 412 – S04 (Final Review)

Policy vs. Mechanism

 Policy - what to do
– users should not be able to read other users files

 Mechanism- how to accomplish the goal
– file protection properties are checked on open system call

 Want to be able to change policy without having to
change mechanism
– change default file protection

 Extreme examples of each:
– micro-kernel OS - all mechanism, no policy
– MACOS - policy and mechanism are bound together

7CMSC 412 – S04 (Final Review)

Processes

 What is a process?
– a program in execution
– “An execution stream in the context of a particular state”
– a piece of code along with all the things the code can affect

or be affected by.
• this is a bit too general. It includes all files and

transitively all other processes
– only one thing happens at a time within a process

 What’s not a process?
– program on a disk - a process is an active object, but a

program is just a file

8CMSC 412 – S04 (Final Review)

Process Creation
 Who creates processes?

– answer: other processes
– operations is called fork (or spawn)
– what about the first process?

 Have a tree of processes
• parent-child relationship between processes

 what resources does the child get?
• new resources from the OS
• a copy of the parent resources
• a subset of the parent resources

 What program does the child run?
• a copy of the parent (UNIX fork)

– a process may change its program (execve call in
UNIX)

• a new program specified at creation (VMS spawn)

9CMSC 412 – S04 (Final Review)

Critical Section Problem
 processes must

– request permission to enter the region
– notify when leaving the region

 protocol needs to
– provide mutual exclusion

• only one process at a time in the critical section
– ensure progress

• no process outside a CS may block another process
– guarantee bounded waiting time

• limited number of times other processes can enter the
critical section while another process is waiting

– not depend on number or speed of CPUs
• or other hardware resources

 May assume that some instructions are atomic
– typically load, store, and test word instructions

10CMSC 412 – S04 (Final Review)

Deadlocks

 System contains finite set of resources
– Process requests resource before using it, must release

resource after use
– Process is in a deadlock state when every process in the set

is waiting for an event that can be caused only by another
process in the set

 4 necessary deadlock conditions:
– Mutual exclusion - at least one resource must be

held in a non-sharable mode
– Hold and wait
– No preemption
– Circular wait

11CMSC 412 – S04 (Final Review)

Deadlock Prevention
 Ensure that one conditions for deadlock never holds
 Hold and wait

– guarantee that when a process requests a
resource, it does not hold any other resources

– Each process could be allocated all needed
resources before beginning execution

 Mutual exclusion
– Sharable resources

 Circular wait
– make sure that each process claims all resources in

increasing order of resource type enumeration

 No Premption
– virutalize resources and permit them to be prempted. For

example, CPU can be prempted.

12CMSC 412 – S04 (Final Review)

Banker’s Algorithm
 Each process must declare the maximum number of

instances of each resource type it may need
 Maximum cannot exceed resources available to

system
 Variables: (n is the number of processes, m is

the number of resource types)
– Available - vector of length m indicating the number of

available resources of each type
– Max - n by m matrix defining the maximum demand of each

process
– Allocation - n by m matrix defining number of resources of

each type currently allocated to each process
– Need: n by m matrix indicating remaining resource needs of

each process

13CMSC 412 – S04 (Final Review)

Short-term scheduling algorithms
 First-Come, First-Served (FCFS, or FIFO)

– as process becomes ready, join Ready queue, scheduler
always selects process that has been in queue longest

 Round-Robin (RR)
– use preemption, based on clock - time slicing

 Shortest Process Next (SPN)
– non-preemptive
– select process with shortest expected processing time

 Shortest Remaining Time (SRT)
– preemptive version of SPN
– scheduler chooses process with shortest expected

remaining process time

 Priorities
– assign each process a priority, and scheduler always

chooses process of higher priority over one of lower priority

14CMSC 412 – S04 (Final Review)

Managing Memory
 Main memory is big, but what if we run out

– use virtual memory
– keep part of memory on disk

• bigger than main memory
• slower than main memory

 Want to have several program in memory at once
– keeps processor busy while one process waits for I/O
– need to protect processes from each other
– have several tasks running at once

• compiler, editor, debugger
• word processing, spreadsheet, drawing program

 Use virtual addresses
– look like normal addresses
– hardware translates them to physical addresses

15CMSC 412 – S04 (Final Review)

Paging
 Divide physical memory into fixed sized chunks

called pages
– typical pages are 512 bytes to 64k bytes
– When a process is to be executed, load the pages that are

actually used into memory

 Have a table to map virtual pages to physical pages
 Consider a 32 bit addresses

– 4096 byte pages (12 bits for the page)
– 20 bits for the page number

Page
Table Main

Memory
+

Virtual Address Location Present Rd/Write

20 bits

12 bits

16CMSC 412 – S04 (Final Review)

Inverted Page Tables
 Solution to the page table size problem
 One entry per page frame of physical memory

<process-id, page-number>
– each entry lists process associated with the page and the

page number
– when a memory reference:

• <process-id,page-number,offset>occurs, the inverted
page table is searched (usually with the help of a
hashing mechanism)

• if a match is found in entry i in the inverted page table,
the physical address <i,offset> is generated

– The inverted page table does not store information about
pages that are not in memory

• page tables are used to maintain this information
• page table need only be consulted when a page is

brought in from disk

17CMSC 412 – S04 (Final Review)

What Happens when a virtual address
has no physical address?

 called a page fault
– a trap into the operating system from the hardware

 caused by: the first use of a page
– called demand paging
– the operating system allocates a physical page and the

process continues
– read code from disk or init data page to zero

 caused by: a reference to an address that is not valid
– program is terminated with a “segmentation violation”

 caused by: a page that is currently on disk
– read page from disk and load it into a physical page, and

continue the program

 causde by: a copy on write page

18CMSC 412 – S04 (Final Review)

Page State (hardware view)
 Page frame number (location in memory or on disk)
 Valid Bit

– indicates if a page is present in memory or stored on disk

 A modify or dirty bit
– set by hardware on write to a page
– indicates whether the contents of a page have been modified

since the page was last loaded into main memory
– if a page has not been modified, the page does not have to

be written to disk before the page frame can be reused

 Reference bit
– set by the hardware on read/write
– cleared by OS
– can be used to approximate LRU page replacement

 Protection attributes
– read, write, execute

19CMSC 412 – S04 (Final Review)

Page Replacement Algorithms
 FIFO

– Replace the page that was brought in longest ago
– However

• old pages may be great pages (frequently used)
• number of page faults may increase when one increases

number of page frames (discouraging!)
– called belady’s anomaly
– 1,2,3,4,1,2,5,1,2,3,4,5 (consider 3 vs. 4 frames)

 Optimal
– Replace the page that will be used furthest in the future
– Good algorithm(!) but requires knowledge of the future
– With good compiler assistance, knowledge of the future is

sometimes possible

20CMSC 412 – S04 (Final Review)

Page Replacement Algorithms

 LRU
– Replace the page that was actually used longest ago
– Implementation of LRU can be a bit expensive

• e.g. maintain a stack of nodes representing pages and
put page on top of stack when the page is accessed

• maintain a time stamp associated with each page

 Approximate LRU algorithms
– maintain reference bit(s) which are set whenever a page is

used
– at the end of a given time period, reference bits are cleared

21CMSC 412 – S04 (Final Review)

Working Sets and Page Replacement

 Programs usually display reference locality
– temporal locality

• repeated access to the same memory location
– spatial locality

• consecutive memory locations access nearby memory
locations

– memory hierarchy design relies heavily on locality reference
• sequence of nested storage media

 Working set
– set of pages referenced in the last delta references

Small
Very Fast

Large
Very Slow

Working Set Size

22CMSC 412 – S04 (Final Review)

File Abstraction
 What is a file?

– A named collection of information stored on secondary
storage

 Properties of a file
– non-volatile
– can read, read, or update it
– has meta-data to describe attributes of the file

 File Attributes
– name: a way to describe the file
– type: some information about what is stored in the file
– location: how to find the file on disk
– size: number of bytes
– protection: access control

• may be different for read, write, execute, append, etc.
– time: access, modification, creation
– version: how many times has the file changed

23CMSC 412 – S04 (Final Review)

Tree Directories
 create a tree of files
 each directory can contain files or directory entries
 each process has a current directory

– can name files relative to that directory
– can change directories as needed

a b

hollings user1 user2

vi gdb one tocc x y

system users mail

z

24CMSC 412 – S04 (Final Review)

File Protection
 How to give access to some users and not others?
 Access types:

– read, write, execute, append, delete, list
– rename: often based on protection of directory
– copy: usually the same as read

 Degree of control
– access lists

• list for each user for each file the permitted operations
– groups

• enumerate users in a list called a group
• provide same protection to all members of the group
• depending on system:

– files may be in one or many groups
– users may be in one or many groups

– per file passwords (tedious and a security problem)

25CMSC 412 – S04 (Final Review)

Filesystems

 Raw Disks can be viewed as:
– a linear array of fixed sized units of allocation, called blocks

• assume that blocks are error free (for now)
• typical block size is 512 to 4096 bytes

– can update a block in place, but must write the entire block
– can access any block in any desired order

• blocks must be read as a unit
• for performance reasons may care about “near” vs. “far”

blocks (but that is covered in a future lecture)

 A Filesystem:
– provides a hierarchical namespace via directories
– permits files of variable size to be stored
– provides disk protection by restricting access to files based

on permissions

26CMSC 412 – S04 (Final Review)

Allocation Methods
 How do we select a free disk block to use?
 Contiguous allocation

– allocate a contiguous chunk of space to a file
– directory entry indicates the starting block and the length of

the file
– easy to implement, but

• how to satisfy a given sized request from a list of free
holes?

• two options
– first fit (find the first gap that fits)
– best fit (find the smallest gaps that is large enough)

• What happens if one wants to append to file?
– from time to time, one will need to repack files

27CMSC 412 – S04 (Final Review)

Indexed Allocation
 Bring all pointers together in an index block

– Each file has its own index block - ith entry of index block
points to ith block making up the file

 How large to make an index block?
– unless one only wants to support fixed size files, index block

scheme needs to be extensible

 Linked scheme:
– maintain a linked list of indexed blocks

 Multilevel index:
– Index block can point to other index blocks (which point to

index blocks), which point to files

 Hybrid multi-level index
– first n blocks are from a fixed index
– next m blocks from an indirect index
– next o blocks from a double indirect index

28CMSC 412 – S04 (Final Review)

Hybrid Multi-level Index (UNIX)
 Observations

– most files are small
– most of the space on the disk is consumed by large files

 Want a flexible way to support different sized
– assume 4096 byte block
– first 12 blocks (48KB) are from a fixed index
– next 1024 blocks (1MB) from an indirect index
– next 10242 blocks (1GB) from a double indirect index
– final 10243 blocks (1TB) from a triple indirect index

directory entry

Indirect
Index

double indirect index

29CMSC 412 – S04 (Final Review)

Disk Cache

 Buffer in main memory for disk sectors
 Cache contains copy of some of the sectors on a

disk. When I/O request is made for a sector, a check
is made to find out if sector is in the disk cache

 Replacement strategy:
– Least recently used: block that has been in the cache

longest with no reference gets replaced
– Least frequently used: block that experiences fewest

references gets replaced

30CMSC 412 – S04 (Final Review)

Disk Scheduling
 First come, first served

– ordering may lead to lots of disk head movement

 Shortest seek time first: select request with the
minimum seek time from current head position
– potential problem with distant tracks not getting service for

an indefinite period

 Scan scheduling
– read-write head starts at one end of the disk, moves to the

other, servicing requests as it reaches each track

 C-Scan (circular scan)
– disk head sweeps in only one direction
– when the disk head reaches one end, it returns to the other

31CMSC 412 – S04 (Final Review)

Who do you trust?

 It’s easy to get paranoid
 Do I trust a login prompt?
 Do I trust the OS that I got from the vendor?
 Do I trust the system staff?

– should I encrypt all my files?

 Networking
– do you trust the network provider?
– do you trust the phone company?

 How do you bootstrap security?
– always need one “out of band” transfer to get going

32CMSC 412 – S04 (Final Review)

Authentication
 How does the computer know who is using it?

– need to exchange some information to verify the user
– types of information exchanged:

• pins
– numeric passwords
– too short to be secure in most cases

• passwords
– a string of letters and numbers
– often easy to guess

• challenge/response pairs
– user needs to be apply to apply a specific algorithm
– often involve use of a calculator like device
– can be combined with passwords

• unique attributes of the person
– i.e. signature, thumb print, DNA?
– sometimes these features can change during life

33CMSC 412 – S04 (Final Review)

Encryption: protecting info from being read
 Given a message m

– use a key k, and function Ek to compute Ek(m)
– store or send only Ek(m)
– use a second second key k and function Dk’ such that

• Dk’(Ek(m)) = m
– Ek and Dk’ need not be kept a secrete

 If k=k’ it’s called private key encryption
– need to keep k secret
– example DES

 if k != k’, it’s called public key encryption
– need only keep one of them secret
– if k’ is secret, anyone can send a private message
– if k is secret, it is possible to “sign” a message
– still need a way to authenticate k or k’ for a user
– example RSA

34CMSC 412 – S04 (Final Review)

Sending Data
 Data is split into packets

– limited size units of sending information
– can be

• fixed sized (ATM)
• variable size (Ethernet)

 Need to provide a destination for the packet
– need to identify two levels of information

• machine to send data to
• comm abstraction (e.g. process) to get data

– address may be:
• a globally unique destination

– for example every host has a unique id
• may unique between hops

– unique id between two switches

35CMSC 412 – S04 (Final Review)

Ethernet
 10 Mbps (to 100 Mbps)
 mili-second latency
 limited to several kilometers in distance
 variable sized units of transmission
 bus based protocol

– requests to use the network can collide

 addresses are 48 bits
– unique to each interface

Computer Computer

36CMSC 412 – S04 (Final Review)

Encapsulation
How do we send higher layer packets over lower layers?

 Higher level info is opaque to lower layers
– it’s just data to be moved from one point to another

 Higher levels may support larger sizes than lower
– could need to fragment a higher level packet

• split into several lower level packets
• need to re-assemble at the end

– examples:
• ATM cells are 48 bytes, but IP packets can be 64K
• IP packets are 64K, but files are megabytes

IP Header IP Data Area

Frame Data AreaFrame
Header

37CMSC 412 – S04 (Final Review)

Routing
 How does a packet find its destination?

– problem is called routing

 Several options:
– source routing

• end points know how to get everywhere
• each packet is given a list of hops before it is sent

– hop-by-hop
• each host knows for each destination how to get one

more hop in the right direction

 Can route packets:
– per session

• each packet in a connection takes same path
– per packet

• packets may take different routes
• possible to have out of order delivery

