
1CMSC 412 – S14 (lect 13)

Announcements
 project #3 is due today!
 Project #4 will be on the web today

– It’s a team project (will email partners)

2CMSC 412 – S14 (lect 13)

X86 Segmentation + Paging
Offset

+

selector

directory offsetpage

Page Directory Page Table Page Frame

Seg Descriptor

Page Table
Entry

Stored in
Segment Register Virtual Address

3CMSC 412 – S14 (lect 13)

64 bit processors

 Problem: 2 level page tables are too small
 Solution 1:

– Use more levels & larger page size
• Alpha:

– 3 level
– variable size pages
– w8KB pages

– 43 bits of virtual address
– 13 bits page offset
– 3x10=30 bits in page tables

– w64KB pages
– 55 bits of virtual address
– 16 bits page offset
– 3x13 = 39 bits in page tables

4CMSC 412 – S14 (lect 13)

Sparc & IBM Power 64 bit processors

 Ultra Sparc 64 bit MMU
– 8KB, 16KB, 512KB, 4MB pages supported
– Software TLB miss handler
– 44 bit virtual address

 Power 4
– Variable sized pages up to 16MB
– Inverted page tables
– TLB

• 1024 entry 4-way set associate
– TLB cache

• Called ERAT
– 128 entry 2-way set associative

5CMSC 412 – S14 (lect 13)

Other 64-bit Designs

 AMD-64
– 54 bit physical memory
– With 4KB pages

• 48 bits of virtual address are used
• 4KB pages

– 12 bits page
– 4x9 = 36 bits via 4-level page tables

• 2MB pages
– 21 bits page
– 3x9 = 27 bits via 3-level page tables

6CMSC 412 – S14 (lect 13)

Inverted Page Tables
 Solution to the page table size problem
 One entry per page frame of physical memory

<process-id, page-number>
– each entry lists process associated with the page and the page

number
– when a memory reference:

• <process-id,page-number,offset>occurs, the inverted page
table is searched (usually with the help of a hashing
mechanism)

• if a match is found in entry i in the inverted page table, the
physical address <i,offset> is generated

– The inverted page table does not store information about pages
that are not in memory

• page tables are used to maintain this information
• page table need only be consulted when a page is brought in

from disk

7CMSC 412 – S14 (lect 13)

Inverted Page Table Example (PPC)
Virtual Address

Page
Table

(variable size)

one per system
Main

Memory+

16
Segment
Registers

(per process)

4 16

24
Virtual Segment ID

Page Table Group
8 page table entries

Hash Function

12

VS ID (40)
Physical page (20)

Status bits

Page Table Entry (PTE)

Page # ByteSeg

40

8CMSC 412 – S14 (lect 13)

Access Large Memory

 Problem:
– Even with Super pages, limited TLB reach

 Solution:
– Add one extra large segment in addition to VM
– Can be any sized contiguous region of memory
– Can map into any part of a processes address space
– Consists of three fields:

• Virtual base (starting addr in virtual memory, page aligned)
• Physical base (starting addr in physical memory, page aligned)
• Length (in multiple of machine’s page size)

– Hardware always consults this mapping regardless of TLB

