Announcements

e Midterm is Thursday (3/6/14)

— Covers up through definition of deadlock (last Th lecture)
— Summary of reading assignments on web

e Project #2 is due today at 5:00 PM

e Project #1grades are now posted in grades
— Re-grade request deadline is 3/11/14

CMSC 412 — S14 (lect 10)

Detecting Deadlock Algorithm

e Variables:
n is the number of processes

m Is the number of resource types

— Available - vector of length m indicating the number of available
resources of each type

— Work - vector of length m indicating the number of currently
available resources of each type

— Allocation - n by m matrix defining number of resources of each
type currently allocated to each process

— Request is an m x n matrix indicating the number of additional
resources requested by each process

— Finish is a vector of length n (processes) indicating if we are
finished checking that process

CMSC 412 — S14 (lect 10)

Detecting Deadlock
1. Work = Avallable;
foreachiinn
If any of Allocation[i,*] '= 0 Finish[i] = false
else Finishl[i] = true;
2. Find an i such that Finish[i] = false and
Request|[l,*] <= Work]i,*] if no such i, go to 4
3. Work(i,*] += Allocation[i,*];
Finish[i] = true;
goto step 2
4. If Finish[i] = false for some I, system is in deadlock

Note: this requires m x n?steps

CMSC 412 — S14 (lect 10)

Recovery from deadlock

e Must free up resources by some means

e Process termination
— kill all deadlocked processes
— select one process and kill it
 must re-run deadlock detection algorithm again to see if it
IS freed.
e Resource Preemption
— select a process, resource and de-allocate it
— rollback the process
* needs to be reset the process to a safe state
* this requires additional state
— starvation
e what prevents a process from never finishing?

CMSC 412 — S14 (lect 10)

Deadlock Prevention

Ensure that:
one or more of the necessary conditions for deadlock do not hold
e Hold and wait

— guarantee that when a process reguests a resource,
It does not hold any other resources

— Each process could be allocated all needed
resources before beginning execution

— Alternately, process might only be allowed to wait
for a new resource when it is not currently holding
any resource

CMSC 412 — S14 (lect 10)

Deadlock Prevention

e Mutual exclusion

— Sharable resources do not require mutually
exclusive access and cannot be involved In a
deadlock.

e Circular walt

— Impose a total ordering on all resource types and make sure
that each process claims all resources in increasing order of
resource type enumeration

e No Premption

— virutalize resources and permit them to be prempted. For
example, CPU can be prempted.

CMSC 412 — S14 (lect 10)

Deadlock Avoidance

e Require additional information about how resources
are to be requested - decide to approve or
disapprove requests on the fly

e Assume that each process lets us know its maximum
resource request

e Safe state:

— system can allocate resources to each process (up to its
maximum) in some order and still avoid a deadlock

— A system is in a safe state if there exists a safe sequence

CMSC 412 — S14 (lect 10)

Safe Sequence

e Sequence of processes <P,, .. P> Is a safe
sequence If for each P,, the resources that P, can
request can be satisfied by the currently available
resources plus the resources held by all P;, |<i

e If the necessary resources are not immediately
available, P; can always wait until all P;, <i have
completed

CMSC 412 — S14 (lect 10)

Banker’'s Algorithm

e Each process must declare the maximum number of
Instances of each resource type it may need

e Maximum can’t exceed resources available to system
e Variables:

n is the number of processes

m Is the number of resource types

Available - vector of length m indicating the number of available
resources of each type

Max - n by m matrix defining the maximum demand of each
process

Allocation - n by m matrix defining number of resources of each
type currently allocated to each process

Need: n by m matrix indicating remaining resource needs of
each process

Work: a vector of length m (resources)
Finish: a vector of length n (processes)

CMSC 412 — S14 (lect 10)

Safe State Predicate

1. Work = Avallable; Finish[*] = false all elements
2. Find an i such that Finish[i] = false 1" Ve
and Need]i,*] @Vork[i,*] If no such i, goto 4
3. Work]i,*] += Allocation[i,*];
Finish[i] = true;
goto step 2
4. If Finish[i] = true for all i, system is in a safe state

Note this requires m x n? steps

CMSC 412 —S14 (lect 10) 10

Safe State Predicate - Example

Three resources: A, B, C (10, 5, 7 instances each)

Consider the snapshot of the system at this time \ax - alloc

Alloc Max Avall Need

ABC ABC ABC ABC
PO 010 753 332 743
P1 200 322 122
P2 302 902 600
P3 211 222 011
P4 002 433 431

System is in a safe state, since the sequence <P1, P3, P4, P2, PO> satisfy the
safety criteria.

CMSC 412 — S14 (lect 10)

11

Resource Reqguest Algorithm

(1) If Request; <= Need, then goto 3
— otherwise - the process has exceeded its maximum claim

(2) If Request; <= Available then goto 3

— otherwise process must wait since resources are not available
(3) Check request by having the system pretend that it has
allocated the resources by modifying the state as follows:
— Available = Available - Request;
— Allocation = Allocation + Request;
— Need, = Need, - Request;
e Find out if resulting resource allocation state is safe, otherwise
the request must wait.

CMSC 412 — S14 (lect 10)

12

