
1CMSC 412 – S14 (lect 10)

Announcements
 Midterm is Thursday (3/6/14)

– Covers up through definition of deadlock (last Th lecture)
– Summary of reading assignments on web

 Project #2 is due today at 5:00 PM
 Project #1grades are now posted in grades

– Re-grade request deadline is 3/11/14

2CMSC 412 – S14 (lect 10)

Detecting Deadlock Algorithm
 Variables:

n is the number of processes
m is the number of resource types
– Available - vector of length m indicating the number of available

resources of each type
– Work - vector of length m indicating the number of currently

available resources of each type
– Allocation - n by m matrix defining number of resources of each

type currently allocated to each process
– Request is an m x n matrix indicating the number of additional

resources requested by each process
– Finish is a vector of length n (processes) indicating if we are

finished checking that process

3CMSC 412 – S14 (lect 10)

Detecting Deadlock
1. Work = Available;

foreach i in n

if any of Allocation[i,*] != 0 Finish[i] = false

else Finish[i] = true;
2. Find an i such that Finish[i] = false and

Request[I,*] <= Work[i,*] if no such i, go to 4
3. Work[i,*] += Allocation[i,*] ;

Finish[i] = true;
goto step 2

4. If Finish[i] = false for some i, system is in deadlock

Note: this requires m x n2 steps

4CMSC 412 – S14 (lect 10)

Recovery from deadlock

 Must free up resources by some means
 Process termination

– kill all deadlocked processes
– select one process and kill it

• must re-run deadlock detection algorithm again to see if it
is freed.

 Resource Preemption
– select a process, resource and de-allocate it
– rollback the process

• needs to be reset the process to a safe state
• this requires additional state

– starvation
• what prevents a process from never finishing?

5CMSC 412 – S14 (lect 10)

Deadlock Prevention
Ensure that:

one or more of the necessary conditions for deadlock do not hold

 Hold and wait
– guarantee that when a process requests a resource,

it does not hold any other resources
– Each process could be allocated all needed

resources before beginning execution
– Alternately, process might only be allowed to wait

for a new resource when it is not currently holding
any resource

6CMSC 412 – S14 (lect 10)

Deadlock Prevention

 Mutual exclusion
– Sharable resources do not require mutually

exclusive access and cannot be involved in a
deadlock.

 Circular wait
– Impose a total ordering on all resource types and make sure

that each process claims all resources in increasing order of
resource type enumeration

 No Premption
– virutalize resources and permit them to be prempted. For

example, CPU can be prempted.

7CMSC 412 – S14 (lect 10)

Deadlock Avoidance

 Require additional information about how resources
are to be requested - decide to approve or
disapprove requests on the fly

 Assume that each process lets us know its maximum
resource request

 Safe state:
– system can allocate resources to each process (up to its

maximum) in some order and still avoid a deadlock
– A system is in a safe state if there exists a safe sequence

8CMSC 412 – S14 (lect 10)

Safe Sequence

 Sequence of processes <P1, .. Pn> is a safe
sequence if for each Pi, the resources that Pi can
request can be satisfied by the currently available
resources plus the resources held by all Pj, j<i

 If the necessary resources are not immediately
available, Pi can always wait until all Pj, j<i have
completed

9CMSC 412 – S14 (lect 10)

Banker’s Algorithm
 Each process must declare the maximum number of

instances of each resource type it may need
 Maximum can’t exceed resources available to system
 Variables:

n is the number of processes
m is the number of resource types
– Available - vector of length m indicating the number of available

resources of each type
– Max - n by m matrix defining the maximum demand of each

process
– Allocation - n by m matrix defining number of resources of each

type currently allocated to each process
– Need: n by m matrix indicating remaining resource needs of

each process
– Work: a vector of length m (resources)
– Finish: a vector of length n (processes)

10CMSC 412 – S14 (lect 10)

1. Work = Available; Finish[*] = false
2. Find an i such that Finish[i] = false

and Need[i,*] <= Work[i,*] if no such i, go to 4
3. Work[i,*] += Allocation[i,*];

Finish[i] = true;
goto step 2

4. If Finish[i] = true for all i, system is in a safe state

Note this requires m x n2 steps

all elements
in the vector
are <=

Safe State Predicate

11CMSC 412 – S14 (lect 10)

Safe State Predicate - Example

Alloc Max Avail Need
A B C A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2 7 4 3
P1 2 0 0 3 2 2 1 2 2
P2 3 0 2 9 0 2 6 0 0
P3 2 1 1 2 2 2 0 1 1
P4 0 0 2 4 3 3 4 3 1

Three resources: A, B, C (10, 5, 7 instances each)

Consider the snapshot of the system at this time Max - alloc

System is in a safe state, since the sequence <P1, P3, P4, P2, P0> satisfy the
safety criteria.

12CMSC 412 – S14 (lect 10)

Resource Request Algorithm
(1) If Requesti <= Needi then goto 3

– otherwise - the process has exceeded its maximum claim

(2) If Requesti <= Available then goto 3
– otherwise process must wait since resources are not available

(3) Check request by having the system pretend that it has
allocated the resources by modifying the state as follows:
– Available = Available - Requesti
– Allocation = Allocation + Requesti
– Needi = Needi - Requesti

 Find out if resulting resource allocation state is safe, otherwise
the request must wait.

