
1CMSC 412 – S14 (lect 4)

Announcements
 Program #0

– Due Friday

 Reading
– Threads - Chapter 4 (ch 5, 6th Ed)

2CMSC 412 – S14 (lect 4)

Process Control Block
 Stores all of the information about a process
 PCB contains

– process state: new, ready, etc.
– processor registers
– Memory Management Information

• page tables, and limit registers for segments
– CPU scheduling information

• process priority
• pointers to process queues

– Accounting information
• time used (and limits)
• files used
• program owner

– I/O status information
• list of open files
• pending I/O operations

3CMSC 412 – S14 (lect 4)

Storing PCBs

 Need to keep track of the different processes in the
system

 Collection of PCBs is called a process table
 How to store the process table?
 First Option:

 Problems with Option 1:
– hard to find processes
– how to fairly select a process

P1 P2 P2 P3 P4 P5

Ready Waiting Waiting ReadyNew Term

4CMSC 412 – S14 (lect 4)

Queues of Processes

 Store processes in queues based on state

P1 P2
Ready
Queue

P3 P4
Disk
Queue

P5 P6
Network
Queue

5CMSC 412 – S14 (lect 4)

forking a new process

 create a PCB for the new process
– copy most entries from the parent
– clear accounting fields
– buffered pending I/O
– allocate a pid (process id for the new process)

 allocate memory for it
– could require copying all of the parents segments
– however, text segment usually doesn’t change so that could

be shared
– might be able to use memory mapping hardware to help

• will talk more about this in the memory management part
of the class

 add it to the ready queue

6CMSC 412 – S14 (lect 4)

Variations on Creating a Process

 Fork() [often used with exec too]
– Create a new process with new address space
– Parent address space copied into child
– Child resumes at return of fork

 Spawn(program)
– Create a new process with a new address space
– Child starting running the passed program
– Parent returns from spawn and continues executionn

 Clone(func, stack)
– Creates a new process that shares parents address space
– Child starts running func using the passed stack for locals
– Parent returns from clone and continues execution

7CMSC 412 – S14 (lect 4)

Process Termination
 Process can terminate self

– via the exit system call
 One process can terminate another process

– use the kill system call
– can any process kill any other process?

• No, that would be bad.
• Normally an ancestor can terminate a descendant

 OS kernel can terminate a process
– exceeds resource limits
– tries to perform an illegal operation

 What if a parent terminates before the child
– called an orphan process
– in UNIX becomes child of the root process
– in VMS - causes all descendants to be killed

8CMSC 412 – S14 (lect 4)

Termination (cont.) - UNIX example

 Kernel
– frees memory used by the process
– moved process control block to the terminated queue

 Terminated process
– signals parent of its death (SIGCHILD)
– is called a zombie in UNIX
– remains around waiting to be reclaimed

 parent process
– wait system call retrieves info about the dead process

• exit status
• accounting information

– signal handler is generally called the reaper
• since its job is to collect the dead processes

