
1CMSC 412 – S13 (lect 2)

Announcements
 Program #0

– its due next Friday

 Reading
– Chapter 2
– Chapter 3 (for Tuesday)

2CMSC 412 – S13 (lect 2)

System Calls

 Provide the interface between application programs
and the kernel

 Are like procedure calls
– take parameters
– calling routine waits for response

 Permit application programs to access protected
resources

load r0, x
system call 10

User Program Operating System
(kernel)

Code for
sys call 10

register r0

3CMSC 412 – S13 (lect 2)

System Call Mechanism

 Use numbers to indicate what call is made
 Parameters are passed in registers or on the stack
 Why do we use indirection of system call numbers

rather than directly calling a kernel subroutine?
– provides protection since the only routines available are

those that are export
– permits changing the size and location of system call

implementations without having to re-link application
programs

4CMSC 412 – S13 (lect 2)

Types of System Calls
 File Related

– open, create
– read, write
– close, delete
– get or set file attributes

 Information
– get time
– set system data (OS parameters)
– get process information (id, time used)

 Communication
– establish a connection
– send, receive messages
– terminate a connection

 Process control
– create/terminate a process (including self)

5CMSC 412 – S13 (lect 2)

Computer Systems

 Computers have many different devices
– I/O Devices
– Memory

• volatile storage
– Processor(s)

Processor Memory

Mem. Controller

I/O Bus Controller
Memory Bus (Front Side)

I/O Bus (PCI)

Display AdapterUSB Adapter

Peripheral Bus (USB)

Disk Drives Keyboard DVD Drive

Network Adapter

Network (Ethernet)

Disk Controller
Disk Bus (SCSI)

6CMSC 412 – S13 (lect 2)

I/O Systems

 Many different types of devices
– disks
– networks
– displays
– mouse
– keyboard
– tapes

 Each have a different expectation for performance
– bandwidth

• rate at which data can be moved
– latency

• time from request to first data back

7CMSC 412 – S13 (lect 2)

Different Requirements lead to Multiple
Buses

 Processor Bus (on chip)
– Many Gigabytes/sec

 Memory Bus (on processor board)
– Up to 100 Gigabyte per second

 I/O Bus (PCI & PCI-E)
– ~1s gigabytes per second
– buses are more complex than we saw in class

• show PCI spec.

 Device Bus (SCSI, USB)
– tens of megabytes per second

8CMSC 412 – S13 (lect 2)

Issues In Busses

 Performance
– increase the data bus width
– have separate address and data busses
– block transfers

• move multiple words in a single request

 Who controls the bus?
– one or more bus masters

• a bus master is a device that can initiate a bus request
– need to arbitrate who is the bus master

• assign priority to different devices
• use a protocol to select the highest priority item

– daisy chained
– central control

9CMSC 412 – S13 (lect 2)

Disks

 Several types:
– Hard Disks - rigid surface with magnetic coating
– Floppy disks - flexible surface with magnetic coating
– Optical (CDs and DVDs) - read only, write once, multi-write
– Solid State (Flash) – fast seek times, limited number of writes

 Hard Disk Drives:
– collection of platters
– platters contain concentric rings called tracks
– tracks are divided into fixed sized units called sectors
– a cylinder is a collection of all tracks equal distant from the center of

disk
– Current Performance:

• capacity: gigabytes to terabytes
• throughput: sustained < 20 megabytes/sec
• latency: mili-seconds

10CMSC 412 – S13 (lect 2)

I/O Interfaces
 Need to adapt Devices to CPU speeds
 Moving the data

– Programmed I/O
• Special instructions for I/O

– Mapped I/O
• looks like memory only slower

– DMA (direct memory access)
• device controller can write to memory
• processor is not required to be involved
• can grab bus bandwidth which can slow the processor

down

11CMSC 412 – S13 (lect 2)

I/O Interrupts

 Interrupt defined
– indication of an event
– can be caused by hardware devices

• indicates data present or hardware free
– can be caused by software

• system call (or trap)
– CPU stops what it is doing and executes a handler function

• saves state about what was happening
• returns where it left off when the interrupt is done

 Need to know what device interrupted
– could ask each device (slow!)
– instead use an interrupt vector

• array of pointers to functions to handle a specific interrupt

