
1CMSC 412 – S14 (lect 1)

Operating Systems
 Review Syllabus

– read the warning about the size of the project
– make sure you get the 6th edition (or later) of the book

 Class Grades Server
– Grades.cs.umd.edu

 Program #0 Handout
– its due in just over one week
– purpose is to get familiar with the simulator

 Discussion Sections
– will focus on the project and meet only once a week (W)

 Reading
– Chapter 1 
– Chapter 2 (for Thursday)



2CMSC 412 – S14 (lect 1)

What is an Operating System?

 Resource Manager
– Resources include: CPU, memory, disk, network
– OS allocates and de-allocates these resources

 Virtualizer
– provides an abstraction of a larger (or just different machine)
– Examples:

• Virtual memory - looks like more memory
• Java - pseudo machine that looks like a stack machine
• VM - a complete virtual machine (can boot multiple 

copies of an OS on it)

 Multiplexor
– allows sharing of resources and protection
– motivation is cost: consider a $40M supercomputer



3CMSC 412 – S14 (lect 1)

What is an OS (cont)?

 Provider of Services
– includes most of the things in the above definition
– provide “common” subroutines for the programmer

• windowing systems
• memory management

 The software that is always loaded/running
– generally refers to the Os kernel.

• small protected piece of software

 All of these definitions are correct
– but not all operating have all of these features



4CMSC 412 – S14 (lect 1)

Closely Related to an Operating System

 Hardware
– OS is managing hardware resources so needs to know about the 

ugly details of the hardware
• interrupt vectors
• page tables
• I/O registers

– some features can be implemented either in hardware or the OS
• Example: page tables on MIPS

 Languages
– can you write an OS in any language?

• No: need to be able to explicitly layout data structures to 
match hardware



5CMSC 412 – S14 (lect 1)

OS Related Topics (cont)

 Language Runtime systems
– memory management requirements

• explicit heap management
• garbage collection
• stack layout

– concurrency and synchronization
– calling convention (how are parameters passed)

 Data Structure and Algorithms
– efficient access to information in an OS

• for most things need linear time and space 
• for many things want log or constant time



6CMSC 412 – S14 (lect 1)

Usability Goals

 Robustness
– accept all valid input
– detect and gracefully handle all invalid input
– should not be possible to crash the OS

 Consistency
– same operation should mean the same thing

• read from a file or a network should look the same
• a “-” flag should be the same in different commands

– conventions
• define the convention
• follow the convention when adding new items



7CMSC 412 – S14 (lect 1)

Usability Goals (cont)

 Proportionality
– simple, common cases are easy and fast

• good default values
– complex, rare cases are possible but more complex and 

slower
• “rm *” should give a warning
• formatting the disk should not be on the desktop next to 

the trash can



8CMSC 412 – S14 (lect 1)

Cost Goals

 Good Algorithms
– time/space tradeoff are important
– use special hardware where needed

• smart disk controllers, memory protection

 Low maintenance cost
– should not require constant attention 

 Maintainability
– most of cost in OS is in maintenance so make it easy to 

maintain the software base



9CMSC 412 – S14 (lect 1)

Adaptability Goals

 Tailored to the environment
– server vs. workstation
– multi-media vs. data entry

 Changes over time
– added memory
– new devices

 Extensible
– third parties can add new features

• database vendors often need custom features
– end customers can extend the system

• new devices
• new policies



10CMSC 412 – S14 (lect 1)

Why Study Operating Systems?

 They are large and complex programs
– good software engineering examples

 There is no perfect OS
– too many types of users

• real-time, desktop, server, etc...
– many different models and abstractions are possible

• OS researchers have been termed abstraction 
merchants

 Many levels of abstraction
– hardware details: where the bits really go and when
– high level concepts: deadlock, synchronization



11CMSC 412 – S14 (lect 1)

Why Study Operating Systems (cont.)

 Necessity
– reliability: when the OS is down, computer is down
– recovery: when the OS goes down it should not take all of 

your files with it.

 It’s fun
– the details are interesting (at least I think so :)
– thinking about concurrency makes you better at writing 

software for other areas


