
CMSC412, Spring 2010

CMSC412

Project 0

CMSC412, Spring 2010

The usual

• Info:

• http://www.cs.umd.edu/~hollings/cs412/s10/

• Recitation:

• Wed 9:00-9:50

• Wed 10:00-10:50

• TAs:

• Robert Grove, Nick Frangiadakis

CMSC412, Spring 2010

Why are we here

• To get you started on the project and answer your

questions

• Give you background material

• Show you how the concepts you learn apply to

GeekOS.

CMSC412, Spring 2010

Why are we here

• _not_ to tell you where and what to code!

• Pointers:

• The lab is about GeekOS: so read the source

• You’ll be implementing major functionality into the

base kernel.

• So start early…

• Challenging but fun!

CMSC412, Spring 2010

Start Early

CMSC412, Spring 2010

Project 0

• Setup:

• QEMU

• GeekOS base setup

• Project requirements:

• Resource restrictions on GeekOS processes:

• # of active processes

• # of syscalls by a single process

CMSC412, Spring 2010

Project0 lessons…

• You have learned:

• The QEMU simulation setup is:

• Alternatives:

GeekOS

QEMU (HW Emulation)

Native OS

HW

GeekOS

HW

Java Bytecode

Java VM

Native OS

HW

GeekOS

VMware Virtualization

Native OS

HW

CMSC412, Spring 2010

Project0 Lessons…

• You have learned:

• About GeekOS:

• Reading the source code is good and works!

• OS split in two: User-level and a Kernel-level

• Connected by the System call boundary

• GeekOS user processes are just kernel threads with a special

User_Context structure

• grep is your friend

CMSC412, Spring 2010

In more detail: System Calls

• Software interrupt

• The only interrupt callable from user level idt.c #Init_IDT

• SYSCALL_INT: 0x90

• Operation: syscall.h; syscall.c; libc/process.c

• Put args in registers on user side; raise INT

• Recover them on kernel side

• Call the appropriate Sys_XXX

• Return result/error code in appropriate register

• Use g_CurrentThread for information about who raised it

CMSC412, Spring 2010

In more detail: Thread System

• In the kernel

• Each thread is a Kernel_Thread object: kthread.h

• Current thread: g_CurrentThread global

• User mode threads

• Kernel_Thread objects with a populated User_Context

• User mode -> kernel mode execution: syscall

• Kernel vs user memory

• Distinct views: one from the user and one from the kernel

• Kernel needs to access user memory

• Use Copy_From_User/Copy_To_User

CMSC412, Spring 2010

In more detail: The system queues

• Thread_Queue structure

• Run queue:

• Threads which are ready to run, but not currently running

• GeekOS has a single run queue, as of the moment

• Wait queues:

• Threads that are waiting for a specific event or on a specific

device; eg Keyboard IO, network IO, other threads:

geekos/kthread.c#Join()

• Spend 2 mins: follow the Get_Key syscall to see how the thread

eventually gets to the keyboard wait queue

CMSC412, Spring 2010

In more detail: Interrupts

• Types:
• Illegal operations: result in kills

• Faults: page faults etc: not of concern right now

• h/w interrupts

• s/w interrupts: syscall int

• Interrupt handlers

• src/geekos/int.c

• On completion -> control returns to thread that was

interrupted

CMSC412, Spring 2010

Interrupts

• When you don’t want to receive them:

• When you are modifying global data structures; queues etc

• When you want to make some operation atomic

• Disable_Interrupts() / Enable_Interrupts():
• Can use Disable_Interrupts(): include/geekos/int.h

• Extreme caution

• Enable_Interrupts() when atomic operation finished

• See places where this has been done: eg
src/geekos/user.c#Attach_User_Context() and
src/geekos/kthread.c#Reaper()

• Begin_Int_Atomic() / End_Int_Atomic()

• Oblivious way of saving and restoring interrupt state.

• include/geekos/int.h

