Announcements

- Project #6 is due Tuesday at 6:00 PM
- Office Hours This Week
 - Tu 11-12
 - W 10-12 (starts at review session in classroom)
 - Th 11-12
- Course Evaluations
 - Please fill them out!

Display and Window Management

- The screen is a resource in a workstation system
 - multiple processes desire to access the device and control it
 - OS needs to provide abstractions to permit the interaction
- Services
 - protection
 - windows
 - multiplex keyboard and mouse
 - configuration and placement

Issues

- how to get good performance and remain device independent
- how much policy to dictate to users

My Research Interests

• Parallel Computing

- There are limits to how fast one processor can run
- solution: use more than one processor
- Issues in parallel computing design
 - do the processors share memory?
 - is the memory "uniform"?
 - how do processors cache memory?
 - if not how do they communicate?
 - message passing
 - what is the latency of message passing

Parallel Processing

- What happens in parallel?
- Several different processing steps
 - pipeline
 - simple example: grep foo | sort > out
 - called: multiple instruction multiple data (MIMD)
- The same operation
 - every processor runs the same instruction (or no-instruction)
 - called: single instruction multiple data (SIMD)
 - good for image processing
- The same program
 - every processor runs the same program, but not "lock step"
 - called: single program multiple data (SPMD)
 - most common model

Issues in effective Parallel Computation

- Getting enough parallelism
 - Limited by what is left serial
 - Even 10% serial limited to a speedup of 10x even with infinite numbers of processors
- Load balancing
 - every processor should to have some work to do.
- Latency hiding/avoidance
 - getting data from other processors (or other disks) is slow
 - need to either:
 - hide the latency
 - processes can "pre-fetch" data before they need it
 - block and do something else while waiting
 - avoid the latency
 - use local memory (or cache)
 - use local disk (of file buffer cache)
- Limit communication bandwidth
 - use local data
 - use "near" data (i.e. neighbors)

CMSC 412 – S10 (lect 24)

My Research:

- Given a parallel program and a machine
- Try to answer performance related questions
 - Why is the programming running so slowly?
 - How do I fix it?
- Issues:
 - how to measure a program without changing it?
 - how do you find (and then present) the performance problem, not tons of statistics?
- Techniques:
 - dynamic data collection
 - automated search
 - analysis of process interactions

Introduction

• Software today

- makes extensive use of libraries and re-usable components
- Libraries used by an application may not be tuned to the application's need
- Fast software development/distribution with built-in (default) configurations
 - Applications may not run well in all environments
 - There may be no single configuration good for all environments

Large Scale Computing

• Today (11/2009)

- 5 systems with more than 128k processors
- 32 systems >= 16k processors
- World's fastest computer (jaguar at ornl)
 - 224,000 AMD cores
 - 62 Terrabytes of RAM