
1CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

Announcements

Reading: Chapter 16
Project #5 Due on Friday at 6:00 PM

2CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

Distributed Systems

Provide:
– access to remote resources
– security
– location independence
– load balancing

Basic Services:
– remote login (telnet and rlogin protocols)

• extends basic access provided by normal login
– file transfer (ftp, rcp)

• can support anonymous transfers
– information services (http)

• two way protocols (request/response)

3CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

Distributed Systems

A unified view of local and remote access
Typical Services
– data migration

• provide only the data required, not the whole file
• manage multiple copies as versions of the same object

– process migration
• a process can move from one machine to another
• reasons for migration:

– load balancing
– data affinity
– hardware/software preference (better configuration)

4CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

Distributed OS Design Issues

Should provide same model as a central system
– easy to understand for users

Needs to be scaleable
– will it work with 100, 1,000, or 10,000 nodes?

Failure Modes
– avoid a single central failure point
– can loss performance or functionality with failure

• but loss should be proportional to size of failure

Security
– should provide same guarantees on data integrity as a local

system

5CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

File Server State

Does the fileserver maintain information between
requests?
Stateless
– example: NFS
– each request contains a request to read/write a specific part

of a file
– requests must be itempotent

• the same request can be applied several times
– makes recovery of failed clients/servers easier

Stateful
– example: AFS
– servers maintain connections for clients
– improves performance
– required for server based cache management

6CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

/

Mounting a filesystem

Mount attaches a filesystem to a directory
– can be used for local or remote (NFS) filesystems

/

fs

mashie2

Before Mount

filesystem
to mount

hollings

bin

/

/

fs

mashie2

hollings

binmount point

7CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

NFS
Provides a way to mount remote filesystems
– can be done explicitly
– can be done automatically (called an automounter)
– clients are provided “file handle” by the server for future use

Uses VFS: extended UNIX filesystem
– inodes are replaced by vnodes

• network wide unique inodes
• can refer to local or remote files

VFS

NFS ClientUNIX
Filesystem

RPC/XDR

VFS

UNIX
Filesystem

NFS Server

RPC/XDR

Network

read/write/open

8CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

NFS (cont.)

Requests
– are sent via RPC to the server
– include read/write
– query: lookup this directory info

• must be done one step (directory) at a time
– change meta data: file permissions, etc.

Popular due to free implementations
Provides no coherency

9CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

AFS

Designed to scale to 5,000 or more workstations
Location independent naming
– within a single cell

volumes
– basic unit of management
– can vary in size
– can be migrated among servers

names are mapped to “fids”
– 96 bit unique id’s for a file
– three parts: volume, vnode, and uniqidentifier
– location information is stored in a volume to location DB

• replicated on every server

10CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

AFS (cont.)

File Access
– open: file is transferred from server to client

• very large files may only be partially transferred
– read/write: performed on the client
– close: file (if dirty) is written back to server

• can fail if the disk is full

Consistency
– clients have callbacks
– sever informs client when another client writes data
– only applies to open operation
– only requires communication when:

• more than one client wants to write
• one client wants to write and others to read

11CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

Announcements

Reading: Chapter 16, 17
Project #5 Due on Friday at 6:00 PM

12CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

Routing
How does a packet find its destination?
– problem is called routing

Several options:
– source routing

• end points know how to get everywhere
• each packet is given a list of hops before it is sent

– hop-by-hop
• each host knows for each destination how to get one

more hop in the right direction
Can route packets:
– per session

• each packet in a connection takes same path
– per packet

• packets may take different routes
• possible to have out of order delivery

13CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

Routing IP Datagrams
Direct Delivery:
– a machine on a physical network can send a physical frame

directly to another
– transmission of an IP datagram between two machines on a

single physical network does not involve routers.
• Sender encapsulates datagram into a physical frame,

maps destination IP address to a physical address and
sends frame directly to destination

– Sender knows that a machine is on a directly connected
network

• compare network portion of destination ID with own ID - if
these match, the datagram can be sent directly

– Direct delivery can be viewed as the final step in any
datagram transmission

14CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

Routing Datagrams (cont.)

Indirect Delivery
– sender must identify a router to which a datagram can be

sent
– sending processor can reach a router on the sending

processor’s physical network (otherwise the network is
isolated!)

– when frame reaches router, router extracts encapsulated
datagram and IP software selects the next router

• datagram is placed in a frame and sent off to the next
router

15CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

Table Driven Routing

Routing tables on each machine store information about
possible destinations and how to reach them
Routing tables only need to contain network prefixes, not
full IP addresses
– No need to include information about specific hosts

Each entry in a routing table points to a router that can be
reached across a single network
Hosts and routers decide
– can packet be directly sent?
– which router should be responsible for a packet (if there is

more than one on physical net)

16CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

Routing

16

Network
30.0.0.0

Network
40.0.0.0Q RNetwork

20.0.0.0
Network
10.0.0.0

S

10.0.0.5 30.0.0.720.0.0.6

20.0.0.5 30.0.0.6 40.0.0.7

To reach hosts
on network

Route to
this address

20.0.0.0 <DIRECT>

30.0.0.0 <DIRECT>

10.0.0.0 20.0.0.5

40.0.0.0 30.0.0.7

Example from Comer book: Internetworking with TCP/IP: volume 1 [Third Edition]

17CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

17

Algorithm: RouteDatagram (Datagram, RoutingTable)
Extract destination IP address, D, from datagram
and compute network prefix N
If N matches any directly connected network
address

[Direct delivery]

Else if the table contains a host-specific route for D
[send datagram to next-hop specified in table]

Else if the table contains a route for network N
[send datagram to next-hop specified in table]

Else if the table contains a default route
[send the datagram to the default route]

Else declare a routing error

Algorithm from Comer book: Internetworking with TCP/IP: volume 1 [Third Edition]

18CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

Routing (w/ subnets)

18

Network
128.1.0.0/1

6

Network
192.4.10.0/

24
Q R

Network
40.0.0.0/

8

Network
30.0.0.0/

8
S

30.0.0.7 128.1.0.940.0.0.8

40.0.0.7 128.1.0.8 192.4.10.9
To reach hosts

on network Mask* Next Hop

30.0.0.0 255.0.0.0 40.0.0.7

40.0.0.0 255.0.0.0 <DIRECT>

128.1.0.0 255.255.0.0 <DIRECT>

192.4.10.0 255.255.255.0 128.1.0.9

Consider a datagram destined for address 192.4.10.3
and the datagram arrives at router R

Mask field is used to extract the network part of an address
during lookup.

If((Mask[i] & D) == Destination[i]) forward to nextHop[i]

Extract destination IP address, D from datagram
and compute network prefix N

255.0.0.0&192.4.10.3 is not equal to 30.0.0.0

<same for entry 2 and 3>

255.255.255.0&192.4.10.3=192.4.10.0
send to 128.1.0.9

Example from Comer book: Internetworking with TCP/IP: volume 1 [Third Edition]

19CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

Routing

Network
10.0.0.0

Router 1
10.0.0.8
20.0.0.3

Network
20.0.0.0

Router 2
20.0.0.5
30.0.0.7
40.0.0.9

Network
30.0.0.0

Network
40.0.0.0

Router 3
40.0.0.8
10.0.0.3

20CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

Routing with partial information

Routing with partial information
– Hosts do not need complete knowledge of all possible

destination addresses
– Host sends non-local information to (a) router

Routers can also route with partial information
– consider a topology consisting of two completely connected

subgraphs A and B
– subgraphs A and B share a single link
– If a router in A sees an address it does not recognize, it

sends the packet to B and vice-versa

21CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

Early Internet Architecture

Small central set of routers that kept complete
information about all destinations
Larger set of outlying routers with only local
information
Default route for outlying routers is to a central router
Local administrators can make changes
– Local changes need to be propagated locally as well as to

the central routers

22CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

Internet Core Router System

Backbone

router 1 router 2 router 3

Local
Net

2

Local
Net

3

Local
Net

4

Local
Net

1

23CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

Internet Core Routing System
Core routers exchange routing information so each will
have complete information about optimal routes to all
destinations
This did not scale:
– maintaining consistency among core routers became

increasingly difficult
– further difficulties arise when there are several backbones

(e.g. ARPAnet and NSFnet)
– if the core architecture is partitioned so that all routers use

default routes, may induce routing loops
• if routing information is not consistent, it is possible for a

packet to be repeatedly routed in a circle until the packet
times out

24CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

Distributed Systems

Provide:
– access to remote resources
– security
– location independence
– load balancing

Basic Services:
– remote login (telnet and rlogin protocols)

• extends basic access provided by normal login
– file transfer (ftp, rcp)

• can support anonymous transfers
– information services (http)

• two way protocols (request/response)

25CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

Distributed Systems

A unified view of local and remote access
Typical Services
– data migration

• provide only the data required, not the whole file
• manage multiple copies as versions of the same object

– process migration
• a process can move from one machine to another
• reasons for migration:

– load balancing
– data affinity
– hardware/software preference (better configuration)

26CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

Distributed OS Design Issues

Should provide same model as a central system
– easy to understand for users

Needs to be scalable
– will it work with 100, 1,000, or 10,000 nodes?

Failure Modes
– avoid a single central failure point
– can loss performance or functionality with failure

• but loss should be proportional to size of failure
Security
– should provide same guarantees on data integrity as a local

system

27CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

Distributed file systems

Distributed systems can share physically dispersed files
by using a distributed file system
– Transparent DFS allows user mobility by bringing a user’s

environment (home directory) to wherever she logs in

Naming: Location transparency vs. independence
– Transparency: name does not hint on file’s physical storage

location (ex. NFS)
– Independence: name of the file does not need to change

when the file’s physical storage location changes (ex. AFS)

27

28CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

File Server State

Does the fileserver maintain information between
requests?
Stateless
– example: NFS (no open/close ops)
– each request contains a request to read/write a specific part

of a file
– requests must be idempotent

• the same request can be applied several times
– makes recovery of failed clients/servers easier

Stateful
– example: AFS (explicit open/close ops)
– servers maintain connections for clients
– improves performance – via caching
– required for server based cache management

29CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

NFS: Mounting a filesystem

Mount attaches a file-system to a directory
– can be used for local or remote (NFS) file-systems

/

fs

mashie2

Before Mount

filesystem
to mount

/

fs

hollings

binmount point

mashie2

30CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

NFS
Provides a way to mount remote file-systems
– can be done explicitly
– can be done automatically (called an automounter)
– clients are provided “file handle” by the server for future use

Uses VFS: extended UNIX file-system
– inodes are replaced by vnodes

• network wide unique inodes
• can refer to local or remote files

VFS

NFS ClientUNIX
Filesystem

RPC/XDR

VFS

UNIX
Filesystem

NFS Server

RPC/XDR

Network

read/write/open

31CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

NFS (cont.)

Requests
– are sent via RPC to the server
– include read/write
– query: lookup directory info

• must be done one step (directory) at a time
– change meta data: file permissions, etc.

Popular due to free implementations
Provides no coherency

32CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

AFS

Designed to scale to 5,000 or more workstations
Location independent naming
– within a single cell

volumes
– basic unit of management
– can vary in size
– can be migrated among servers

names are mapped to “fids”
– 96 bit unique id’s for a file
– three parts: volume, vnode, and uniqidentifier
– location information is stored in a volume to location DB

• replicated on every server

33CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

AFS (cont.)

File Access
– open: file is transferred from server to client

• very large files may only be partially transferred
– read/write: performed on the client
– close: file (if dirty) is written back to server

• can fail if the disk is full
Consistency
– clients have callbacks
– sever informs client when another client writes data
– only applies to open operation
– only requires communication when:

• more than one client wants to write
• one client wants to write and others to read

34CMSC 412 – S10 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

Display and Window Management

The screen is a resource in a workstation system
– multiple processes desire to access the device and control it
– OS needs to provide abstractions to permit the interaction

Services
– protection
– windows
– multiplex keyboard and mouse
– configuration and placement

Issues
– how to get good performance and remain device

independent
– how much policy to dictate to users

