
1CMSC 412 – S10 (lect 22) copyright 2002 Jeffrey K. Hollingsworth

Announcements

Reading Chapter 18 (Security)
Review Session for the final
– Wed 5/12 (Study day) 10-11:30

Project #6 is on the web
– It is a continuation of #5 and requires your #5 to work

2CMSC 412 – S10 (lect 22) copyright 2002 Jeffrey K. Hollingsworth

Project #6 Notes

Uid
– First process has uid of 0
– Spawned processes

• Inherit uid of parent
• Unless setuid bit is set on program to run, then the uid of

the owner of that file is used

ACLs
– First ACL entry is owner
– Others are for other users

• Can delete these entires with setACl(file, uid, 0)
– Uid 0 can open any file regardless of ACLs

3CMSC 412 – S10 (lect 22) copyright 2002 Jeffrey K. Hollingsworth

Authentication (cont.)

How does a user know what computer they are using?
Need to have mutual authentication
– computer presents some information that only it could contain
– example: Windows <ctrl>-<alt>- to login

• user software can’t trap that information
• assumes that the kernel itself is secure

telephone example:
– never give banking/credit card info over the phone unless you

placed the phone call
• i.e. you use the telco namespace for authentication

4CMSC 412 – S10 (lect 22) copyright 2002 Jeffrey K. Hollingsworth

Example (UNIX passwords)
use a function that is hard to invert
– “easy” to compute f(x) given x
– hard to compute x given f(x)
– the function used is a variation on the DES or MD5 algorithms

• changes selected items in the transformation matrix to prevent
hardware attacks

– store only f(x) in the filesystem
to login:
– user supplies a password x’
– compute f(x’) and compare to f(x)

salt
– add an extra two characters to x so that the same x will produce

different values on different machines
– need to store salt along with password

dictionary attach
– if its to easy to compute f(x)
– can “guess” many passwords and try them out
– salt makes this much harder

5CMSC 412 – S10 (lect 22) copyright 2002 Jeffrey K. Hollingsworth

Types of Software Threats (Malware)
Trojan Horse
– a program that looks like a normal program
– for example a login program written by a user
– UNIX example: never put “.” early in your path

Trap door
– hole left by the programmers to let them into the system
– “system” password set to a default value by the vendor

Worms
– programs that clone themselves and use resources
– Internet worm:

• exploited several bugs and “features” in UNIX
– .rhosts files
– bug in finger command (overwrite strings)
– sendmail “debug” mode to run commands

6CMSC 412 – S10 (lect 22) copyright 2002 Jeffrey K. Hollingsworth

Viruses

Most common on systems with little security
– easy to write to boot blocks, system software
– never run untrusted software with special privileges
– Don’t perform daily operations with root/system privileges

Possible to write system independent viruses
– MS Word virus

• uses macros to call into the OS
– HTML (javascript)
– Flash

7CMSC 412 – S10 (lect 22) copyright 2002 Jeffrey K. Hollingsworth

Access Matrix

Abstraction of protection for objects in a system.
– Rows are domains (users or groups of users)
– Columns are objects (files, printers, etc.)
– Items are methods permitted by a domain on an objects

• read, write, execute, print, delete, …
Representing the Table
– simple representation (dense matrix) is large
– sparse representation possible: each non-zero in the matrix
– observation: same column used frequently

• represent groups of users with a name and just store that
– create a default policy for some objects without a value

Revocation of access
– when are access rights checked?
– selective revocation vs. global

8CMSC 412 – S10 (lect 22) copyright 2002 Jeffrey K. Hollingsworth

Access Matrix

F1 F2 F3 Laser Printer
D1 read execute
D2 execute print
D3 read, write execute
D4 execute
D5 delete

Rows represent users or groups of users
Columns represent files, printers, etc.

9CMSC 412 – S10 (lect 22) copyright 2002 Jeffrey K. Hollingsworth

Capabilities

Un-forgeable Key to access something
Implementation: a string
– I.e. a long numeric sequence for a copier)

Implementation: A protected memory region
• tag memory (or procedures) with access rights

– example - x86 call gate abstraction
• permit rights amplification

