
1CMSC 412 – S10 (lect 18)

Announcements
Reading
– Today Chapter 11 (8th ed) or 12 (6th ed)
– Tuesday Chapter 12 (8th ed) or 13 (6th ed)

Midterm #2 will be returned on Tuesday
Project #5 is on the web
– Deadline is Friday May 7th

2CMSC 412 – S10 (lect 18)

Implementing Directories

Linear List
– array of names for files
– must search entire list to find or allocate a filename
– sorting can improve search performance, but adds

complexity

Hash table
– use hash function to find filenames in directory
– needs a good hash function
– need to resolve collisions
– must keep table small and expand on demand since many

directories are mostly empty

3CMSC 412 – S10 (lect 18)

Unix Directories

Space for directories are allocated in units called
chunks
– Size of a chunk is chosen so that each allocation can be

transferred to disk in a single operation
– Chunks are broken into variable-length directory entries to

allow filenames of arbitrary length
– No directory entry can span more than one chunk
– Directory entry contains

• pointer to inode (file data-structure)
• size of entry
• length of filename contained in entry (up to 255)
• remainder of entry is variable length - contains file name

4CMSC 412 – S10 (lect 18)

inodes

File index node
Contains:
– Pointers to blocks in a file (direct, single indirect, double

indirect, triple indirect)
– Type and access mode
– File’s owner
– Number of references to file
– Size of file
– Number of physical blocks

5CMSC 412 – S10 (lect 18)

Unix directories - links
Each file has unique inode but it may have multiple
directory entries in the same filesystem to reference
inode
Each directory entry creates a hard link of a filename
to the file’s inode
– Number of links to file are kept in reference count variable in

inode
– If links are removed, file is deleted when number of links

becomes zero

Symbolic or soft link
– Implemented as a file that contains a pathname
– Symbolic links do not have an effect on inode reference

count

6CMSC 412 – S10 (lect 18)

File Lookup (/usr/bin/vi)

Indirect
Index

Root inode =2

usrDirectory Entry

binDirectory Entry

viDirectory Entry

Inode

Inode

Data Block

7CMSC 412 – S10 (lect 18)

Using UNIX filesystem data structures
Example: find /usr/bin/vi
– from Leffler, McKusick, Karels and Quarterman
– Search root directory of filesystem to find /usr

• root directory inode is, by convention, stored in inode #2
• inode shows where data blocks are for root directory - these

blocks (not the inode itself) must be retrieved and searched for
entry user

• we discover that the directory user’s inode is inode #4
– Search user for bin

• access blocks pointed to by inode #4 and search contents of
blocks for entry that gives us bin’s inode

• we discover that bin’s inode is inode #7
– Search bin for vi

• access blocks pointed to by inode #7 and search contents of
block for an entry that gives us vi’s inode

• we discover that vi’s inode is inode #7
– Access inode #7 - this is vi’s inode

8CMSC 412 – S10 (lect 18)

How to Improve Speed?

Use A Cache
Name-to-Inode lookup
– Hash on full path name
– Find inode without and disk accesses on a hit

9CMSC 412 – S10 (lect 18)

Mount System Call

How to attach a file system into a name space?
Simple Idea:
– use letters C, D, E, etc.
– use volume names (VMS) – fixed length string

Better Idea:
– Allow attachment at arbitrary points in namespace
– Designate one tree as the “root” file system
– Others are attached to the root

Mount used in:
– UNIX
– Windows (NTFS mount points)
– GeekOS

