Announcements

e Midterm is next Thursday
— Covers up through deadlock

e Project #2 is due Friday at 6:00 PM

CMSC 412 — S10 (lect 10)

Deadlocks

e System contains finite set of resources
— memory space
— printer
— tape
— file
— access to non-reentrant code

e Process reguests resource before using it,
must release resource after use

e Process is in a deadlock state when every
process Iin the set is waiting for an event that
can be caused only by another process in the
set

CMSC 412 — S10 (lect 10)

Formal Deadlocks

e 4 necessary deadlock conditions:

— Mutual exclusion - at least one resource must be
held in a non-sharable mode, that is, only a single
process at a time can use the resource. If another
process requests that resource, the requesting
process must be delayed until the resource Is
released

— Hold and wait - There must exist a process that is
holding at least one resource and is waiting to
acquire additional resources that are currently
held by other processors

CMSC 412 — S10 (lect 10)

Formal Deadlocks

— No preemption: Resources cannot be preempted,;
a resource can be released only voluntarily by the
process holding it, after that process has
completed its task

— Circular wait: There must exist a set {PO,...,Pn} of
waiting processes such that PO is waliting for a
resource that is held by P1, P1 is waiting for a
resource held by P2 etc.

e Note that these are not sufficient conditions

CMSC 412 — S10 (lect 10)

Detecting Deadlock

Work is a vector of length m (resources)
Finish is a vector of length n (processes)

e Allocation is an n X m matrix indicating the number of
each resource type held by each process

e Requestis an m x n matrix indicating the number of

additional resources requested by each process
1. Work = Available; i i the diference from the
If Allocation[i]!'=0 Finish*%alse else Finish = true;
2. Find an i such that Finish[i] = false and Request; <=
Work if no suchi,goto 4
3. Work += Allocation ; Finish[i] = true; goto step 2
4. If Finish[i] = false for some I, system is in deadlock
Note: this requires m x n?steps

CMSC 412 — S10 (lect 10)

Recovery from deadlock

e Must free up resources by some means

e Process termination
— kill all deadlocked processes
— select one process and kill it
* must re-run deadlock detection algorithm again to see if it
IS freed.
e Resource Preemption
— select a process, resource and de-allocate it
— rollback the process
* needs to be reset the process to a safe state
* this requires additional state
— starvation
» what prevents a process from never finishing?

CMSC 412 — S10 (lect 10)

Deadlock Prevention

e Ensure that one (or more) of the necessary
conditions for deadlock do not hold

e Hold and walit

— guarantee that when a process requests a
resource, it does not hold any other resources

— Each process could be allocated all needed
resources before beginning execution

— Alternately, process might only be allowed to wait
for a new resource when it is not currently holding
any resource

CMSC 412 — S10 (lect 10)

Deadlock Prevention

e Mutual exclusion

— Sharable resources do not require mutually
exclusive access and cannot be involved in a

deadlock.

e Circular wait

— Impose a total ordering on all resource types and make sure
that each process claims all resources in increasing order of
resource type enumeration

e No Premption

— virutalize resources and permit them to be prempted. For
example, CPU can be prempted.

CMSC 412 — S10 (lect 10)

Deadlock Avoidance

e Require additional information about how resources
are to be requested - decide to approve or
disapprove requests on the fly

e Assume that each process lets us know its maximum
resource request

e Safe state:

— system can allocate resources to each process (up to its
maximum) in some order and still avoid a deadlock

— A system is in a safe state if there exists a safe sequence

CMSC 412 — S10 (lect 10)

Safe Sequence

e Sequence of processes <P,, .. P > Is a safe
sequence if for each P;, the resources that P, can
request can be satisfied by the currently available
resources plus the resources held by all P;, j<i

e If the necessary resources are not immediately
available, P; can always wait until all P;, |<I have
completed

CMSC 412 — S10 (lect 10) 10

Banker’s Algorithm

e Each process must declare the maximum number of
Instances of each resource type it may need

e Maximum can’t exceed resources available to system
e Variables:

n is the number of processes

m is the number of resource types

Available - vector of length m indicating the number of available
resources of each type

Max - n by m matrix defining the maximum demand of each
process

Allocation - n by m matrix defining number of resources of each
type currently allocated to each process

Need: n by m matrix indicating remaining resource needs of
each process

CMSC 412 — S10 (lect 10) 11

all elements

Work Is a vector of length m (resources) i the vector
Finish is a vector of length n (processes) are <=
. Work = Available; Finish = false

. Find an 1 such that Finish[i] = false and Need,
Work if no suchi,goto 4

. Work += Allocation;; Finishl[i] = true; goto step 2
. If Finish[i] = true for all i, system is in a safe state

N b e @

B~ W

Note this requires m x n? steps

CMSC 412 — S10 (lect 10) 12

Banker’s Algorithm - Example

Three resources: A, B, C (10, 5, 7 instances each)

Consider the snapshot of the system at this time \ax - alloc

Alloc Max Avall Need

ABC ABC ABC ABC
PO 010 753 332 743
Pl 200 322 122
P2 302 902 600
P3 211 222 011
P4 002 433 431

System is in a safe state, since the sequence <P1, P3, P4, P2, PO> satisfy the
safety criteria.

CMSC 412 — S10 (lect 10)

13

Resource Request Algorithm

(1) If Request, <= Need, then goto 3
— otherwise - the process has exceeded its maximum claim
(2) If Request, <= Available then goto 3
— otherwise process must wait since resources are not available
(3) Check request by having the system pretend that it has
allocated the resources by modifying the state as follows:
— Available =Available - Request
— Allocation = Allocation + Request,
— Need, = Need, - Request
e Find out if resulting resource allocation state is safe, otherwise
the request must wait.

CMSC 412 — S10 (lect 10)

14

