
1CMSC 412 – S10 (lect 4)

Announcements
Program #0
– Due Friday

Reading
– Threads - Chapter 4 (ch 5, 6th Ed)

2CMSC 412 – S10 (lect 4)

Process State Transitions

new

readyready runningrunning

waitingwaiting

terminatedterminated
admitted

interrupt

dispatch

I/O request or event waitI/O request or
event wait done

Kill

exit

3CMSC 412 – S10 (lect 4)

Components of a Process

Memory Segments
– Program - often called the text segment
– Data - global variables
– Stack - contains activation records

Processor Registers
– program counter - next instruction to execute
– general purpose CPU registers
– processor status word

• results of compare operations
– floating point registers

4CMSC 412 – S10 (lect 4)

Process Control Block
Stores all of the information about a process
PCB contains
– process state: new, ready, etc.
– processor registers
– Memory Management Information

• page tables, and limit registers for segments
– CPU scheduling information

• process priority
• pointers to process queues

– Accounting information
• time used (and limits)
• files used
• program owner

– I/O status information
• list of open files
• pending I/O operations

5CMSC 412 – S10 (lect 4)

Storing PCBs

Need to keep track of the different processes in the
system
Collection of PCBs is called a process table
How to store the process table?
First Option:

Problems with Option 1:
– hard to find processes
– how to fairly select a process

P1 P2 P2 P3 P4 P5

Ready Waiting Waiting ReadyNew Term

6CMSC 412 – S10 (lect 4)

Queues of Processes

Store processes in queues based on state

P1 P2
Ready
Queue

P3 P4
Disk
Queue

P5 P6
Network
Queue

7CMSC 412 – S10 (lect 4)

forking a new process

create a PCB for the new process
– copy most entries from the parent
– clear accounting fields
– buffered pending I/O
– allocate a pid (process id for the new process)

allocate memory for it
– could require copying all of the parents segments
– however, text segment usually doesn’t change so that could

be shared
– might be able to use memory mapping hardware to help

• will talk more about this in the memory management part
of the class

add it to the ready queue

8CMSC 412 – S10 (lect 4)

Process Termination
Process can terminate self
– via the exit system call

One process can terminate another process
– use the kill system call
– can any process kill any other process?

• No, that would be bad.
• Normally an ancestor can terminate a descendant

OS kernel can terminate a process
– exceeds resource limits
– tries to perform an illegal operation

What if a parent terminates before the child
– called an orphan process
– in UNIX becomes child of the root process
– in VMS - causes all descendants to be killed

9CMSC 412 – S10 (lect 4)

Termination (cont.) - UNIX example

Kernel
– frees memory used by the process
– moved process control block to the terminated queue

Terminated process
– signals parent of its death (SIGCHILD)
– is called a zombie in UNIX
– remains around waiting to be reclaimed

parent process
– wait system call retrieves info about the dead process

• exit status
• accounting information

– signal handler is generally called the reaper
• since its job is to collect the dead processes

10CMSC 412 – S10 (lect 4)

Relationship between Kernel mod and
User Mode

User Process

Kernel

User Process

Unique:
Program
Stack
Heap

Unique:
Program
Stack
Heap

Idle Thread

Kernel Threads:
Each has own stack (separate from user mode)
Share heap with other kernel threads
Run same program (kernel) as other kernel threads

System Calls

Initial Thread

Kernel Mode thread of
A user process

11CMSC 412 – S10 (lect 4)

Threads

processes can be a heavy (expensive) object
threads are like processes but generally a collection
of threads will share
– memory (except stack)
– open files (and buffered data)
– signals

can be user or system level
– user level: kernel sees one process

+ easy to implement by users
- I/O management is difficult
- in an multi-processor can’t get parallelism

– system level: kernel schedules threads

12CMSC 412 – S10 (lect 4)

Important Terms

Threads
– An execution context sharing an address space

Kernel Threads
– Threads running with kernel privileges

User Threads
– Threads running in user space

Processes
– An execution context with an address space
– Visible to and scheduled by the kernel

Light-Weight Processes
– An execution context sharing an address space
– Visible to and scheduled by the kernel

13CMSC 412 – S10 (lect 4)

Dispatcher

The inner most part of the OS that runs processes
Responsible for:
– saving state into PCB when switching to a new process
– selecting a process to run (from the ready queue)
– loading state of another process

Sometimes called the short term scheduler
– but does more than schedule

Switching between processes is called context
switching
One of the most time critical parts of the OS
Almost never can be written completely in a high
level language

