
1CMSC 412 – S10 (lect 3)

Announcements
Program #0
– Due on Friday

Reading
– Today: Processes - Chapter 3 (ch 4, 6th Ed)
– Thursday: Threads - Chapter 4 (ch 5, 6th Ed)

2CMSC 412 – S10 (lect 3)

Types of System Calls
File Related
– open, create
– read, write
– close, delete
– get or set file attributes

Information
– get time
– set system data (OS parameters)
– get process information (id, time used)

Communication
– establish a connection
– send, receive messages
– terminate a connection

Process control
– create/terminate a process (including self)

3CMSC 412 – S10 (lect 3)

System Structure

Simple Structure (or no structure)
– any part of the system may use the functionality of the rest of

the system
– MS-DOS (user programs can call low level I/O routines)

Layered Structure
– layer n can only see the functionality that layer n-1 exports
– provides good abstraction from the lower level details

• new hardware can be added if it provides the interface
required of a particular layer

– system call interface is an example of layering
– can be slow if there are too many layers

Hybrid Approach
– most real systems fall somewhere in the middle

4CMSC 412 – S10 (lect 3)

Policy vs. Mechanism

Policy - what to do
– users should not be able to read other users files

Mechanism- how to accomplish the goal
– file protection properties are checked on open system call

Want to be able to change policy without having to
change mechanism
– change default file protection

Extreme examples of each:
– micro-kernel OS - all mechanism, no policy
– MACOS - policy and mechanism are bound together

5CMSC 412 – S10 (lect 3)

Multi-programming

Systems that permit more than one process at once
– virtually all computers today

Permits more efficient use of resources
– while one process is waiting another can run

Provides natural abstraction of different activities
– windowing system
– editor
– mail daemon

Preemptive vs. non-preemptive muti-programming
– preemptive means that a process can be forced off the

processor by the OS
– provides processor protection

6CMSC 412 – S10 (lect 3)

Processes

What is a process?
– a program in execution
– “An execution stream in the context of a particular state”
– a piece of code along with all the things the code can affect

or be affected by.
• this is a bit too general. It includes all files and

transitively all other processes
– only one thing happens at a time within a process

What’s not a process?
– program on a disk - a process is an active object, but a

program is just a file

7CMSC 412 – S10 (lect 3)

Process State

Processes switch between different states based on
internal and external events
Each process is in exactly one state at a time
Typical States of Processes (varies with OS)
– New: The process is just being created
– Running: Instructions are being executed

• only one process per processor may be running
– Waiting: The process is waiting for an event to occur

• examples: I/O events, signals
– Ready: The process is waiting to be assigned to a processor
– Terminated: The process has finished execution

8CMSC 412 – S10 (lect 3)

Process State Transitions

new

readyready runningrunning

waitingwaiting

terminatedterminated
admitted

interrupt

dispatch

I/O request or event waitI/O request or
event wait done

Kill

exit

