
1CMSC 412 – S04 (Final Review)

Announcements

Final is Friday at 4:00 in CSI 1115
Course evaluations are on the web

2CMSC 412 – S04 (Final Review)

What is an Operating System?

Resource Manager
– Resources include: CPU, memory, disk, network
– OS allocates and de-allocates these resources

Virtual Machine
– provides an abstraction of a larger (or just different machine)
– Examples:

• Virtual memory - looks like more memory
• Java - pseudo machine that looks like a stack machine
• IBM VM - a complete virtual machine (can boot multiple

copies of an OS on it)
Multiplexor
– allows sharing of resources and protection
– motivation is cost: consider a $40M supercomputer

3CMSC 412 – S04 (Final Review)

What is an OS (cont)?

Provider of Services
– includes most of the things in the above definition
– provide “common” subroutines for the programmer

• windowing systems
• memory management

The software that is always loaded/running
– generally refers to the Os kernel.

• small protected piece of software
All of these definitions are correct
– but not all operating have all of these features

4CMSC 412 – S04 (Final Review)

System Calls

Provide the interface between application programs
and the kernel
Are like procedure calls
– take parameters
– calling routine waits for response

Permit application programs to access protected
resources

load r0, x
system call 10

User Program Operating System
(kernel)

Code for
sys call 10

register r0

5CMSC 412 – S04 (Final Review)

System Call Mechanism

Use numbers to indicate what call is made
Parameters are passed in registers or on the stack
Why do we use indirection of system call numbers
rather than directly calling a kernel subroutine?
– provides protection since the only routines available are

those that are export
– permits changing the size and location of system call

implementations without having to re-link application
programs

6CMSC 412 – S04 (Final Review)

Policy vs. Mechanism

Policy - what to do
– users should not be able to read other users files

Mechanism- how to accomplish the goal
– file protection properties are checked on open system call

Want to be able to change policy without having to
change mechanism
– change default file protection

Extreme examples of each:
– micro-kernel OS - all mechanism, no policy
– MACOS - policy and mechanism are bound together

7CMSC 412 – S04 (Final Review)

Processes

What is a process?
– a program in execution
– “An execution stream in the context of a particular state”
– a piece of code along with all the things the code can affect

or be affected by.
• this is a bit too general. It includes all files and

transitively all other processes
– only one thing happens at a time within a process

What’s not a process?
– program on a disk - a process is an active object, but a

program is just a file

8CMSC 412 – S04 (Final Review)

Process Creation
Who creates processes?
– answer: other processes
– operations is called fork (or spawn)
– what about the first process?

Have a tree of processes
• parent-child relationship between processes

what resources does the child get?
• new resources from the OS
• a copy of the parent resources
• a subset of the parent resources

What program does the child run?
• a copy of the parent (UNIX fork)

– a process may change its program (execve call in
UNIX)

• a new program specified at creation (VMS spawn)

9CMSC 412 – S04 (Final Review)

Critical Section Problem
processes must
– request permission to enter the region
– notify when leaving the region

protocol needs to
– provide mutual exclusion

• only one process at a time in the critical section
– ensure progress

• no process outside a CS may block another process
– guarantee bounded waiting time

• limited number of times other processes can enter the
critical section while another process is waiting

– not depend on number or speed of CPUs
• or other hardware resources

May assume that some instructions are atomic
– typically load, store, and test word instructions

10CMSC 412 – S04 (Final Review)

Deadlocks

System contains finite set of resources
– Process requests resource before using it, must release

resource after use
– Process is in a deadlock state when every process in the set

is waiting for an event that can be caused only by another
process in the set

4 necessary deadlock conditions:
– Mutual exclusion - at least one resource must be

held in a non-sharable mode
– Hold and wait
– No preemption
– Circular wait

11CMSC 412 – S04 (Final Review)

Deadlock Prevention
Ensure that one conditions for deadlock never holds
Hold and wait
– guarantee that when a process requests a

resource, it does not hold any other resources
– Each process could be allocated all needed

resources before beginning execution
Mutual exclusion
– Sharable resources

Circular wait
– make sure that each process claims all resources in

increasing order of resource type enumeration
No Premption
– virutalize resources and permit them to be prempted. For

example, CPU can be prempted.

12CMSC 412 – S04 (Final Review)

Banker’s Algorithm
Each process must declare the maximum number of
instances of each resource type it may need
Maximum cannot exceed resources available to
system
Variables: (n is the number of processes, m is
the number of resource types)
– Available - vector of length m indicating the number of

available resources of each type
– Max - n by m matrix defining the maximum demand of each

process
– Allocation - n by m matrix defining number of resources of

each type currently allocated to each process
– Need: n by m matrix indicating remaining resource needs of

each process

13CMSC 412 – S04 (Final Review)

Short-term scheduling algorithms
First-Come, First-Served (FCFS, or FIFO)
– as process becomes ready, join Ready queue, scheduler

always selects process that has been in queue longest
Round-Robin (RR)
– use preemption, based on clock - time slicing

Shortest Process Next (SPN)
– non-preemptive
– select process with shortest expected processing time

Shortest Remaining Time (SRT)
– preemptive version of SPN
– scheduler chooses process with shortest expected

remaining process time
Priorities
– assign each process a priority, and scheduler always

chooses process of higher priority over one of lower priority

14CMSC 412 – S04 (Final Review)

Managing Memory
Main memory is big, but what if we run out
– use virtual memory
– keep part of memory on disk

• bigger than main memory
• slower than main memory

Want to have several program in memory at once
– keeps processor busy while one process waits for I/O
– need to protect processes from each other
– have several tasks running at once

• compiler, editor, debugger
• word processing, spreadsheet, drawing program

Use virtual addresses
– look like normal addresses
– hardware translates them to physical addresses

15CMSC 412 – S04 (Final Review)

Paging
Divide physical memory into fixed sized chunks
called pages
– typical pages are 512 bytes to 64k bytes
– When a process is to be executed, load the pages that are

actually used into memory
Have a table to map virtual pages to physical pages
Consider a 32 bit addresses
– 4096 byte pages (12 bits for the page)
– 20 bits for the page number

Page
Table Main

Memory
+

Virtual Address Location Present Rd/Write

20 bits

12 bits

16CMSC 412 – S04 (Final Review)

Inverted Page Tables
Solution to the page table size problem
One entry per page frame of physical memory
 <process-id, page-number>
– each entry lists process associated with the page and the

page number
– when a memory reference:

• <process-id,page-number,offset>occurs, the inverted
page table is searched (usually with the help of a
hashing mechanism)

• if a match is found in entry i in the inverted page table,
the physical address <i,offset> is generated

– The inverted page table does not store information about
pages that are not in memory

• page tables are used to maintain this information
• page table need only be consulted when a page is

brought in from disk

17CMSC 412 – S04 (Final Review)

What Happens when a virtual address
has no physical address?

called a page fault
– a trap into the operating system from the hardware

caused by: the first use of a page
– called demand paging
– the operating system allocates a physical page and the

process continues
– read code from disk or init data page to zero

caused by: a reference to an address that is not valid
– program is terminated with a “segmentation violation”

caused by: a page that is currently on disk
– read page from disk and load it into a physical page, and

continue the program
causde by: a copy on write page

18CMSC 412 – S04 (Final Review)

Page State (hardware view)
Page frame number (location in memory or on disk)
Valid Bit
– indicates if a page is present in memory or stored on disk

A modify or dirty bit
– set by hardware on write to a page
– indicates whether the contents of a page have been modified

since the page was last loaded into main memory
– if a page has not been modified, the page does not have to

be written to disk before the page frame can be reused
Reference bit
– set by the hardware on read/write
– cleared by OS
– can be used to approximate LRU page replacement

Protection attributes
– read, write, execute

19CMSC 412 – S04 (Final Review)

Page Replacement Algorithms
FIFO
– Replace the page that was brought in longest ago
– However

• old pages may be great pages (frequently used)
• number of page faults may increase when one increases

number of page frames (discouraging!)
– called belady’s anomaly
– 1,2,3,4,1,2,5,1,2,3,4,5 (consider 3 vs. 4 frames)

Optimal
– Replace the page that will be used furthest in the future
– Good algorithm(!) but requires knowledge of the future
– With good compiler assistance, knowledge of the future is

sometimes possible

20CMSC 412 – S04 (Final Review)

Page Replacement Algorithms

LRU
– Replace the page that was actually used longest ago
– Implementation of LRU can be a bit expensive

• e.g. maintain a stack of nodes representing pages and
put page on top of stack when the page is accessed

• maintain a time stamp associated with each page
Approximate LRU algorithms
– maintain reference bit(s) which are set whenever a page is

used
– at the end of a given time period, reference bits are cleared

21CMSC 412 – S04 (Final Review)

Working Sets and Page Replacement

Programs usually display reference locality
– temporal locality

• repeated access to the same memory location
– spatial locality

• consecutive memory locations access nearby memory
locations

– memory hierarchy design relies heavily on locality reference
• sequence of nested storage media

Working set
– set of pages referenced in the last delta references

Small
Very Fast

Large
Very Slow

Working Set Size

22CMSC 412 – S04 (Final Review)

File Abstraction
What is a file?
– A named collection of information stored on secondary

storage
Properties of a file
– non-volatile
– can read, read, or update it
– has meta-data to describe attributes of the file

File Attributes
– name: a way to describe the file
– type: some information about what is stored in the file
– location: how to find the file on disk
– size: number of bytes
– protection: access control

• may be different for read, write, execute, append, etc.
– time: access, modification, creation
– version: how many times has the file changed

23CMSC 412 – S04 (Final Review)

Tree Directories
create a tree of files
each directory can contain files or directory entries
each process has a current directory
– can name files relative to that directory
– can change directories as needed

a b

hollings user1 user2

vi gdb one tocc x y

system users mail

z

24CMSC 412 – S04 (Final Review)

File Protection
How to give access to some users and not others?
Access types:
– read, write, execute, append, delete, list
– rename: often based on protection of directory
– copy: usually the same as read

Degree of control
– access lists

• list for each user for each file the permitted operations
– groups

• enumerate users in a list called a group
• provide same protection to all members of the group
• depending on system:

– files may be in one or many groups
– users may be in one or many groups

– per file passwords (tedious and a security problem)

25CMSC 412 – S04 (Final Review)

Filesystems

Raw Disks can be viewed as:
– a linear array of fixed sized units of allocation, called blocks

• assume that blocks are error free (for now)
• typical block size is 512 to 4096 bytes

– can update a block in place, but must write the entire block
– can access any block in any desired order

• blocks must be read as a unit
• for performance reasons may care about “near” vs. “far”

blocks (but that is covered in a future lecture)
A Filesystem:
– provides a hierarchical namespace via directories
– permits files of variable size to be stored
– provides disk protection by restricting access to files based

on permissions

26CMSC 412 – S04 (Final Review)

Allocation Methods
How do we select a free disk block to use?
Contiguous allocation
– allocate a contiguous chunk of space to a file
– directory entry indicates the starting block and the length of

the file
– easy to implement, but

• how to satisfy a given sized request from a list of free
holes?

• two options
– first fit (find the first gap that fits)
– best fit (find the smallest gaps that is large enough)

• What happens if one wants to append to file?
– from time to time, one will need to repack files

27CMSC 412 – S04 (Final Review)

Indexed Allocation
Bring all pointers together in an index block
– Each file has its own index block - ith entry of index block

points to ith block making up the file
How large to make an index block?
– unless one only wants to support fixed size files, index block

scheme needs to be extensible
Linked scheme:
– maintain a linked list of indexed blocks

Multilevel index:
– Index block can point to other index blocks (which point to

index blocks), which point to files
Hybrid multi-level index
– first n blocks are from a fixed index
– next m blocks from an indirect index
– next o blocks from a double indirect index

28CMSC 412 – S04 (Final Review)

Hybrid Multi-level Index (UNIX)
Observations
– most files are small
– most of the space on the disk is consumed by large files

Want a flexible way to support different sized
– assume 4096 byte block
– first 12 blocks (48KB) are from a fixed index
– next 1024 blocks (1MB) from an indirect index
– next 10242 blocks (1GB) from a double indirect index
– final 10243 blocks (1TB) from a triple indirect index

directory entry

Indirect
Index

double indirect index

29CMSC 412 – S04 (Final Review)

Disk Cache

Buffer in main memory for disk sectors
Cache contains copy of some of the sectors on a
disk. When I/O request is made for a sector, a check
is made to find out if sector is in the disk cache
Replacement strategy:
– Least recently used: block that has been in the cache

longest with no reference gets replaced
– Least frequently used: block that experiences fewest

references gets replaced

30CMSC 412 – S04 (Final Review)

Disk Scheduling
First come, first served
– ordering may lead to lots of disk head movement

Shortest seek time first: select request with the
minimum seek time from current head position
– potential problem with distant tracks not getting service for

an indefinite period
Scan scheduling
– read-write head starts at one end of the disk, moves to the

other, servicing requests as it reaches each track
C-Scan (circular scan)
– disk head sweeps in only one direction
– when the disk head reaches one end, it returns to the other

31CMSC 412 – S04 (Final Review)

Who do you trust?

It’s easy to get paranoid
Do I trust a login prompt?
Do I trust the OS that I got from the vendor?
Do I trust the system staff?
– should I encrypt all my files?

Networking
– do you trust the network provider?
– do you trust the phone company?

How do you bootstrap security?
– always need one “out of band” transfer to get going

32CMSC 412 – S04 (Final Review)

Authentication
How does the computer know who is using it?
– need to exchange some information to verify the user
– types of information exchanged:

• pins
– numeric passwords
– too short to be secure in most cases

• passwords
– a string of letters and numbers
– often easy to guess

• challenge/response pairs
– user needs to be apply to apply a specific algorithm
– often involve use of a calculator like device
– can be combined with passwords

• unique attributes of the person
– i.e. signature, thumb print, DNA?
– sometimes these features can change during life

33CMSC 412 – S04 (Final Review)

Encryption: protecting info from being read
Given a message m
– use a key k, and function Ek to compute Ek(m)
– store or send only Ek(m)
– use a second second key k and function Dk’ such that

• Dk’(Ek(m)) = m
– Ek and Dk’ need not be kept a secrete

If k=k’ it’s called private key encryption
– need to keep k secret
– example DES

if k != k’, it’s called public key encryption
– need only keep one of them secret
– if k’ is secret, anyone can send a private message
– if k is secret, it is possible to “sign” a message
– still need a way to authenticate k or k’ for a user
– example RSA

34CMSC 412 – S04 (Final Review)

Sending Data
Data is split into packets
– limited size units of sending information
– can be

• fixed sized (ATM)
• variable size (Ethernet)

Need to provide a destination for the packet
– need to identify two levels of information

• machine to send data to
• comm abstraction (e.g. process) to get data

– address may be:
• a globally unique destination

– for example every host has a unique id
• may unique between hops

– unique id between two switches

35CMSC 412 – S04 (Final Review)

Ethernet
10 Mbps (to 100 Mbps)
mili-second latency
limited to several kilometers in distance
variable sized units of transmission
bus based protocol
– requests to use the network can collide

addresses are 48 bits
– unique to each interface

Computer Computer

36CMSC 412 – S04 (Final Review)

Encapsulation
How do we send higher layer packets over lower layers?
Higher level info is opaque to lower layers
– it’s just data to be moved from one point to another

Higher levels may support larger sizes than lower
– could need to fragment a higher level packet

• split into several lower level packets
• need to re-assemble at the end

– examples:
• ATM cells are 48 bytes, but IP packets can be 64K
• IP packets are 64K, but files are megabytes

IP Header IP Data Area

Frame Data AreaFrame
Header

37CMSC 412 – S04 (Final Review)

Routing
How does a packet find its destination?
– problem is called routing

Several options:
– source routing

• end points know how to get everywhere
• each packet is given a list of hops before it is sent

– hop-by-hop
• each host knows for each destination how to get one

more hop in the right direction
Can route packets:
– per session

• each packet in a connection takes same path
– per packet

• packets may take different routes
• possible to have out of order delivery

38CMSC 412 – S04 (Final Review)

Remote Procedure Calls

Provide a way to access remotes services
Look like “normal” procedure calls
Issues:
– binding functions to services

• can use static binding (like kernel trap #’s)
• can use a nameserver

– data format
• different machine may have different formats
• translation is called marshalling

– pick a common way to encode info (e.g. XDR)
– always send in this common format

– failures
• what if a host dies while and RPC is active?

39CMSC 412 – S04 (Final Review)

Distributed Filesystems

Provide the same semantics as a local filesystem
– data is stored at various locations in the system

• often stored in central fileservers
• can be stored in serverless fileservers

Naming
– location transparency

• filenames don’t imply information about location
– location independence

• can move the file without changing names
– naming files

• host:local-name
– not transparent

• global-name
– transparent, requires something to coordinate names

40CMSC 412 – S04 (Final Review)

NFS
Provides a way to mount remote filesystems
– can be done explicitly
– can be done automatically (called an automounter)
– clients are provided “file handle” by the server for future use

Uses VFS: extended UNIX filesystem
– inodes are replaced by vnodes

• network wide unique inodes
• can refer to local or remote files

VFS

NFS ClientUNIX
Filesystem

RPC/XDR

VFS

UNIX
Filesystem

NFS Server

RPC/XDR

Network

read/write/open

41CMSC 412 – S04 (Final Review)

AFS

Designed to scale to 5,000 or more workstations
Location independent naming
– within a single cell

volumes
– basic unit of management
– can vary in size
– can be migrated among servers

names are mapped to “fids”
– 96 bit unique id’s for a file
– three parts: volume, vnode, and uniqidentifier
– location information is stored in a volume to location DB

• replicated on every server

42CMSC 412 – S04 (Final Review)

AFS (cont.)

File Access
– open: file is transferred from server to client

• very large files may only be partially transferred
– read/write: performed on the client
– close: file (if dirty) is written back to server

• can fail if the disk is full
Consistency
– clients have callbacks
– sever informs client when another client writes data
– only applies to open operation
– only requires communication when:

• more than one client wants to write
• one client wants to write and others to read

