
1CMSC 412 – S04 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

Announcements

Project #6 is available

2CMSC 412 – S04 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

Project #6 Notes

Uid
– First process has uid of 0
– Spawned processes

• Inherit uid of parent
• Unless setuid bit is set on program to run, then the uid of

the owner of that file is used
ACLs
– First ACL entry is owner
– Others are for other users

• Can delete these entires with setACl(file, uid, 0)
– Uid 0 can open any file regardless of ACLs

3CMSC 412 – S04 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

Distributed Systems

Provide:
– access to remote resources
– security
– location independence
– load balancing

Basic Services:
– remote login (telnet and rlogin protocols)

• extends basic access provided by normal login
– file transfer (ftp, rcp)

• can support anonymous transfers
– information services (http)

• two way protocols (request/response)

4CMSC 412 – S04 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

Distributed Systems

A unified view of local and remote access
Typical Services
– data migration

• provide only the data required, not the whole file
• manage multiple copies as versions of the same object

– process migration
• a process can move from one machine to another
• reasons for migration:

– load balancing
– data affinity
– hardware/software preference (better configuration)

5CMSC 412 – S04 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

Distributed OS Design Issues

Should provide same model as a central system
– easy to understand for users

Needs to be scaleable
– will it work with 100, 1,000, or 10,000 nodes?

Failure Modes
– avoid a single central failure point
– can loss performance or functionality with failure

• but loss should be proportional to size of failure
Security
– should provide same guarantees on data integrity as a local

system

6CMSC 412 – S04 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

File Server State

Does the fileserver maintain information between
requests?
Stateless
– example: NFS
– each request contains a request to read/write a specific part

of a file
– requests must be itempotent

• the same request can be applied several times
– makes recovery of failed clients/servers easier

Stateful
– example: AFS
– servers maintain connections for clients
– improves performance
– required for server based cache management

7CMSC 412 – S04 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

/

Mounting a filesystem

Mount attaches a filesystem to a directory
– can be used for local or remote (NFS) filesystems

/

fs

mashie2

Before Mount

filesystem
to mount

hollings

bin

/

/

fs

mashie2

hollings

binmount point

8CMSC 412 – S04 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

NFS
Provides a way to mount remote filesystems
– can be done explicitly
– can be done automatically (called an automounter)
– clients are provided “file handle” by the server for future use

Uses VFS: extended UNIX filesystem
– inodes are replaced by vnodes

• network wide unique inodes
• can refer to local or remote files

VFS

NFS ClientUNIX
Filesystem

RPC/XDR

VFS

UNIX
Filesystem

NFS Server

RPC/XDR

Network

read/write/open

9CMSC 412 – S04 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

NFS (cont.)

Requests
– are sent via RPC to the server
– include read/write
– query: lookup this directory info

• must be done one step (directory) at a time
– change meta data: file permissions, etc.

Popular due to free implementations
Provides no coherency

10CMSC 412 – S04 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

AFS

Designed to scale to 5,000 or more workstations
Location independent naming
– within a single cell

volumes
– basic unit of management
– can vary in size
– can be migrated among servers

names are mapped to “fids”
– 96 bit unique id’s for a file
– three parts: volume, vnode, and uniqidentifier
– location information is stored in a volume to location DB

• replicated on every server

11CMSC 412 – S04 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

AFS (cont.)

File Access
– open: file is transferred from server to client

• very large files may only be partially transferred
– read/write: performed on the client
– close: file (if dirty) is written back to server

• can fail if the disk is full
Consistency
– clients have callbacks
– sever informs client when another client writes data
– only applies to open operation
– only requires communication when:

• more than one client wants to write
• one client wants to write and others to read

12CMSC 412 – S04 (lect 24) copyright 2002 –4 Jeffrey K. Hollingsworth

Display and Window Management

The screen is a resource in a workstation system
– multiple processes desire to access the device and control it
– OS needs to provide abstractions to permit the interaction

Services
– protection
– windows
– multiplex keyboard and mouse
– configuration and placement

Issues
– how to get good performance and remain device

independent
– how much policy to dictate to users

