

Monitoring

- Record (log) significant events
 - attempts to login to the system
 - changes to selected files or directories
- Possible to compromise the log
 - the user or software breaking in could delete all or part of the logs
 - could record logs to non-erasable storage
 - have a line printer attached to the machine
 - use WORM drives
 - send data to a secure remote host

Tripwire

- Compute a set of expectorations about system
 - Hash of file contents
 - Dates on files
- Store database of values
 - On read-only media
 - Offline
- Periodically
 - Compare database to current system
 - Report any differences

Encryption: protecting info from being read

• Given a message m

- use a key k, and function E_k to compute $E_k(m)$
- store or send only $E_k(m)$
- use a second second key k and function $D_{k'}$ such that
 - $D_{k'}(E_k(m)) = m$
- E_k and $D_{k'}$ need not be kept a secrete
- If k=k' it's called private key encryption
 - need to keep k secret
 - example DES

• if k != k', it's called public key encryption

- need only keep one of them secret
- if k' is secret, anyone can send a private message
- if k is secret, it is possible to "sign" a message
- still need a way to authenticate k or k' for a user
- example RSA

Transposition Cipher

• To Break:

- each letter is itself, so normal distribution of letters is seen
- guess number of columns (verify with known plaintext)
- order columns using trigram frequency
- Block of text is used to break up digrams

6

One Time Pad

- Key Idea: randomness in key
- Create a random string as long as the message
 - each party has the pad
 - xor each bit of the message with the a bit of the key
- Almost impossible to break
- Some practical problems
 - need to ensure key is not captured
 - a one bit drop will corrupt the rest of the message

Secure Socket Layer

- Goal:
 - Provide secure access to remote services
 - Authenticate remote servers to local users
 - Allow remote systems to authenticate users
 - Permit encrypted communication
- Approach
 - Public Key Cryptography
 - Certificates (signed by certificate authorities)
 - Sever sends:
 - Certificate (signed use CA's private key)
 - Certificate contains server's public key
 - Client responds by encrypting reply using servers pub key
 - Server checks response with private key

CMSC 412 – S04 (lect 22)

Sending Data

Data is split into packets

- limited size units of sending information
- can be
 - fixed sized (ATM)
 - variable size (Ethernet)
- Need to provide a destination for the packet
 - need to identify two levels of information
 - machine to send data to
 - comm abstraction (e.g. process) to get data
 - address may be:
 - a globally unique destination
 - for example every host has a unique id
 - may unique between hops
 - unique id between two switches