Announcements

e Program #1
— Is due at 9:00 AM on Thursday

e Program #0
— Re-grade requests are due by Monday at 11:59:59 PM

e Reading
— Chapter 6

CMSC 412 — S04 (lect 5)




CPU Scheduling

e Manage CPU to achieve several objectives:
— maximize CPU utilization
— minimize response time
— maximize throughput
— minimize turnaround time

e Multiprogrammed OS
— multiple processes in executable state at same time

— scheduling picks the one that will run at any give time (on a
uniprocessor)

e Processes use the CPU in bursts
— may be short or long depending on the job

CMSC 412 — S04 (lect 5)




Types of Scheduling

e At least 4 types:
— long-term - add to pool of processes to be executed

— medium-term - add to number of processes partially or fully
In main memory

— short-term - which available process will be executed by the
processor

— 1/O - which process’s pending I/0O request will be handled by
an available 1/0 device

e Scheduling changes the state of a process

CMSC 412 — S04 (lect 5)




Scheduling criteria

e Per processor, or system oriented
— CPU utilization
* maximize, to keep as busy as possible
— throughput
* maximize, number of processes completed per time unit

e Per process, or user oriented

— turnaround time
e minimize, time of submission to time of completion.

— waiting time
* minimize, time spent in ready queue - affected solely by

scheduling policy

— response time
* minimize, time to produce first output
* most important for interactive OS

CMSC 412 — S04 (lect 5)




Scheduling criteria
non-performance related

e Per process
— predictability
 job should run in about the same amount of time,
regardless of total system load
e Per processor
— fairness
e don’t starve any processes, treat them all the same
— enforce priorities
 favor higher priority processes
— balance resources
» keep all resources busy

CMSC 412 — S04 (lect 5)




Medium vs. Short Term Scheduling

e Medium-term scheduling
— Part of swapping function between main memory and disk

* based on how many processes the OS wants available
at any one time

e must consider memory management if no virtual memory
(VM), so look at memory requirements of swapped out
processes
e Short-term scheduling (dispatcher)

— Executes most frequently, to decide which process to
execute next

— Invoked whenever event occurs that interrupts current
process or provides an opportunity to preempt current one in
favor of another

— Events:

CMSC 412 — S04 (lect 5)




Long-term scheduling

e Determine which programs admitted to system for
processing - controls degree of multiprogramming

e Once admitted, program becomes a process, either:

— added to queue for short-term scheduler

— swapped out (to disk), so added to queue for medium-term
scheduler

e Batch Jobs
— Can system take a new process?
* more processes implies less time for each existing one

» add job(s) when a process terminates, or if percentage of
processor idle time is greater than some threshold
— Which job to turn into a process

« first-come, first-serve (FCFS), or to manage overall
system performance (e.g. based on priority, expected
execution time, 1/0O requirements, etc.)

CMSC 412 — S04 (lect 5)




Process State Transitions

Long-term schem

%

term
scheduling "3

Medium-

term _ ! ~"Event
scheduling ' ~ Wwait

CMSC 412 — S04 (lect 5)




Process Priority

e Use multiple run queues, one for each priority

e \Who decides priority
— dispatcher - that mixes policy and mechanism too much
— when the process is created, assign it a priority

— have a second level scheduler (often called medium term
scheduler) to manage priorities

 mechanism is to move processes between different
gueues

e Will discuss scheduling more in a future lecture

CMSC 412 — S04 (lect 5)




Short-term scheduling algorithms

e First-Come, First-Served (FCFS, or FIFO)

— as process becomes ready, join Ready queue, scheduler
always selects process that has been in queue longest

— Dbetter for long processes than short ones
— favors CPU-bound over I/0O-bound processes
— need priorities, on uniprocessor, to make it effective

CMSC 412 — S04 (lect 5)

10




Algorithms (cont.)

e Round-Robin (RR)

— use preemption, based on clock - time slicing
e generate interrupt at periodic intervals

— when interrupt occurs, place running process in Ready
gueue, select next process to run using FCFS

— what’s the length of a time slice

« short means short processes move through quickly, but
high overhead to deal with clock interrupts and
scheduling

e guideline is time slice should be slightly greater than time
of “typical job” CPU burst

— problem dealing with CPU and 1/O bound processes

CMSC 412 — S04 (lect 5)

11




Algorithms (cont.)

e Shortest Process Next (SPN)
— non-preemptive
— select process with shortest expected processing time

— Improves response time, but increases its variability,
reducing predictability - provably decreases average waiting
time

— problem is estimating required processing time

— risk of starving longer processes, as long as there are
shorter processes around

— not good for time sharing - non-preemptive

CMSC 412 — S04 (lect 5) 12




Algorithms (cont.)

e Shortest Remaining Time (SRT)

preemptive version of SPN

scheduler chooses process with shortest expected
remaining process time

still need estimate of processing time, and can starve longer
processes

* no bias in favor of longer processes, as in FCFS

e no extra interrupts as in RR, so reduced overhead
must record elapsed service times
should give better turnaround time than SPN

CMSC 412 — S04 (lect 5)

13




Priority Based Scheduling

e Priorities

— assign each process a priority, and scheduler always
chooses process of higher priority over one of lower priority

e More than one ready queue, ordered by priorities

) RQ _lilispa_tch_,_ReJﬁgse

—>
Adnyit :
RON
—>
< Preemption
< Event Wait
Event

Blocked queue
Occurs

CMSC 412 — S04 (lect 5) 14




Priority Algorithms

e Fixed Queues

processes are statically assigned to a queue

— sample queues: system, foreground, background
e Multilevel Feedback

processes are dynamically assigned to queues
penalize jobs that have been running longer
preemptive, with dynamic priority
have N ready queues (RQO-RQN),

 start process in RQO

 if quantum expires, moved to i + 1 queue

CMSC 412 — S04 (lect 5)

15




Feedback scheduling (cont.)

— problem: turnaround time for longer processes

* Can

increase greatly, even starve them, if new short jobs

regularly enter system

— solution

1: vary preemption times according to queue

» processes in lower priority queues have longer time slices

— solution

2. promote a process to higher priority queue

o after it spends a certain amount of time waiting for service in its
current queue, it moves up

— solution3: allocate fixed share of CPU time to jobs
 if a process doesn't use its share, give it to other processes
e variation on this idea: lottery scheduling

CMSC 412 — S04 (lect 5)

assign a process “tickets” (# of tickets is share)

pick random number and run the process with the winning
ticket.

16




UNIX System V

e Multilevel feedback, with
— RR within each priority queue
— 10ms second preemption
— priority based on process type and execution history, lower
value is higher priority
e priority recomputed once per second, and scheduler
selects new process to run

e For process |, P(i) = Base + CPU(i-1)/2 + nice
— P(i) is priority of process j at interval i
— Base is base priority of process |
— CPU(®) = U(@)/2 + CPU(i-1)/2
e U(i) is CPU use of process j in interval i

« exponentially weighted average CPU use of process |
through interval i

— nice is user-controllable adjustment factor

CMSC 412 — S04 (lect 5) 17




UNIX (cont.)

e Base priority divides all processes into (non-
overlapping) fixed bands of decreasing priority levels

— swapper, block 1/O device control, file manipulation,
character I/O device control, user processes

e bands optimize access to block devices (disk), allow
OS to respond quickly to system calls

e penalizes CPU-bound processes w.r.t. I/O bound
e targets general-purpose time sharing environment

CMSC 412 — S04 (lect 5)

18




Windows NT

e Target:
— single user, in highly interactive environment
— aserver
e preemptive scheduler with multiple priority levels

e flexible system of priorities, RR within each, plus
dynamic variation on basis of current thread activity
for some levels

e 2 priority bands, real-time and variable, each with 16
levels

— real-time ones have higher priority, since require immediate
attention(e.g. communication, real-time task)

CMSC 412 — S04 (lect 5) 19




Windows NT (cont.)

e In real-time class, all threads have fixed priority that
never changes

e In variable class, priority begins at an initial value,
and can change, up or down
— FIFO queue at each level, but thread can switch queues

e Dynamic priority for a thread can be from 2 to 15
— If thread interrupted because time slice is up, priority lowered
— if interrupted to wait on 1/O event, priority raised
— favors 1/0O-bound over CPU-bound threads

— for 1/O bound threads, priority raised more for interactive
waits (e.g. keyboard, display) than for other 1/0O (e.g. disk)

CMSC 412 — S04 (lect 5) 20




Multi-Processor Scheduling

e Multiple processes need to be scheduled together
— Called gang-scheduling
— Allowing communicating processes to interact w/o/ waiting

e Try to schedule processes back to same processor
— Called affinity scheduling

* Maintain a small ready queue per processor
» Go to global queue if nothing local is ready

CMSC 412 — S04 (lect 5)

21




