
1CMSC 412 – S04 (lect 5)

Announcements
Program #1
– Is due at 9:00 AM on Thursday

Program #0
– Re-grade requests are due by Monday at 11:59:59 PM

Reading
– Chapter 6

2CMSC 412 – S04 (lect 5)

CPU Scheduling

Manage CPU to achieve several objectives:
– maximize CPU utilization
– minimize response time
– maximize throughput
– minimize turnaround time

Multiprogrammed OS
– multiple processes in executable state at same time
– scheduling picks the one that will run at any give time (on a

uniprocessor)
Processes use the CPU in bursts
– may be short or long depending on the job

3CMSC 412 – S04 (lect 5)

Types of Scheduling

At least 4 types:
– long-term - add to pool of processes to be executed
– medium-term - add to number of processes partially or fully

in main memory
– short-term - which available process will be executed by the

processor
– I/O - which process’s pending I/O request will be handled by

an available I/O device
Scheduling changes the state of a process

4CMSC 412 – S04 (lect 5)

Scheduling criteria
Per processor, or system oriented
– CPU utilization

• maximize, to keep as busy as possible
– throughput

• maximize, number of processes completed per time unit
Per process, or user oriented
– turnaround time

• minimize, time of submission to time of completion.
– waiting time

• minimize, time spent in ready queue - affected solely by
scheduling policy

– response time
• minimize, time to produce first output
• most important for interactive OS

5CMSC 412 – S04 (lect 5)

Scheduling criteria
non-performance related

Per process
– predictability

• job should run in about the same amount of time,
regardless of total system load

Per processor
– fairness

• don’t starve any processes, treat them all the same
– enforce priorities

• favor higher priority processes
– balance resources

• keep all resources busy

6CMSC 412 – S04 (lect 5)

Medium vs. Short Term Scheduling

Medium-term scheduling
– Part of swapping function between main memory and disk

• based on how many processes the OS wants available
at any one time

• must consider memory management if no virtual memory
(VM), so look at memory requirements of swapped out
processes

Short-term scheduling (dispatcher)
– Executes most frequently, to decide which process to

execute next
– Invoked whenever event occurs that interrupts current

process or provides an opportunity to preempt current one in
favor of another

– Events: clock interrupt, I/O interrupt, OS call, signal

7CMSC 412 – S04 (lect 5)

Long-term scheduling
Determine which programs admitted to system for
processing - controls degree of multiprogramming
Once admitted, program becomes a process, either:
– added to queue for short-term scheduler
– swapped out (to disk), so added to queue for medium-term

scheduler
Batch Jobs
– Can system take a new process?

• more processes implies less time for each existing one
• add job(s) when a process terminates, or if percentage of

processor idle time is greater than some threshold
– Which job to turn into a process

• first-come, first-serve (FCFS), or to manage overall
system performance (e.g. based on priority, expected
execution time, I/O requirements, etc.)

8CMSC 412 – S04 (lect 5)

Process State Transitions

New

Exit

Ready,
suspend Ready Running

Blocked
Blocked,
suspend

Long-term scheduling

Medium-
term
scheduling

Short-
term
scheduling

Event
wait

9CMSC 412 – S04 (lect 5)

Process Priority

Use multiple run queues, one for each priority
Who decides priority
– dispatcher - that mixes policy and mechanism too much
– when the process is created, assign it a priority
– have a second level scheduler (often called medium term

scheduler) to manage priorities
• mechanism is to move processes between different

queues
Will discuss scheduling more in a future lecture

10CMSC 412 – S04 (lect 5)

Short-term scheduling algorithms

First-Come, First-Served (FCFS, or FIFO)
– as process becomes ready, join Ready queue, scheduler

always selects process that has been in queue longest
– better for long processes than short ones
– favors CPU-bound over I/O-bound processes
– need priorities, on uniprocessor, to make it effective

11CMSC 412 – S04 (lect 5)

Algorithms (cont.)

Round-Robin (RR)
– use preemption, based on clock - time slicing

• generate interrupt at periodic intervals
– when interrupt occurs, place running process in Ready

queue, select next process to run using FCFS
– what’s the length of a time slice

• short means short processes move through quickly, but
high overhead to deal with clock interrupts and
scheduling

• guideline is time slice should be slightly greater than time
of “typical job” CPU burst

– problem dealing with CPU and I/O bound processes

12CMSC 412 – S04 (lect 5)

Algorithms (cont.)

Shortest Process Next (SPN)
– non-preemptive
– select process with shortest expected processing time
– improves response time, but increases its variability,

reducing predictability - provably decreases average waiting
time

– problem is estimating required processing time
– risk of starving longer processes, as long as there are

shorter processes around
– not good for time sharing - non-preemptive

13CMSC 412 – S04 (lect 5)

Algorithms (cont.)

Shortest Remaining Time (SRT)
– preemptive version of SPN
– scheduler chooses process with shortest expected

remaining process time
– still need estimate of processing time, and can starve longer

processes
• no bias in favor of longer processes, as in FCFS
• no extra interrupts as in RR, so reduced overhead

– must record elapsed service times
– should give better turnaround time than SPN

14CMSC 412 – S04 (lect 5)

Priority Based Scheduling
Priorities
– assign each process a priority, and scheduler always

chooses process of higher priority over one of lower priority
More than one ready queue, ordered by priorities

RQ0
CPU

RQ1

RQn

Blocked queue

...Admit

Event
Occurs

Event Wait

Preemption

Dispatch Release

15CMSC 412 – S04 (lect 5)

Priority Algorithms

Fixed Queues
– processes are statically assigned to a queue
– sample queues: system, foreground, background

Multilevel Feedback
– processes are dynamically assigned to queues
– penalize jobs that have been running longer
– preemptive, with dynamic priority
– have N ready queues (RQ0-RQN),

• start process in RQ0
• if quantum expires, moved to i + 1 queue

16CMSC 412 – S04 (lect 5)

Feedback scheduling (cont.)

– problem: turnaround time for longer processes
• can increase greatly, even starve them, if new short jobs

regularly enter system
– solution1: vary preemption times according to queue

• processes in lower priority queues have longer time slices
– solution2: promote a process to higher priority queue

• after it spends a certain amount of time waiting for service in its
current queue, it moves up

– solution3: allocate fixed share of CPU time to jobs
• if a process doesn’t use its share, give it to other processes
• variation on this idea: lottery scheduling

– assign a process “tickets” (# of tickets is share)
– pick random number and run the process with the winning

ticket.

17CMSC 412 – S04 (lect 5)

UNIX System V
Multilevel feedback, with
– RR within each priority queue
– 10ms second preemption
– priority based on process type and execution history, lower

value is higher priority
priority recomputed once per second, and scheduler
selects new process to run
For process j, P(i) = Base + CPU(i-1)/2 + nice
– P(i) is priority of process j at interval i
– Base is base priority of process j
– CPU(i) = U(i)/2 + CPU(i-1)/2

• U(i) is CPU use of process j in interval i
• exponentially weighted average CPU use of process j

through interval i
– nice is user-controllable adjustment factor

18CMSC 412 – S04 (lect 5)

UNIX (cont.)

Base priority divides all processes into (non-
overlapping) fixed bands of decreasing priority levels
– swapper, block I/O device control, file manipulation,

character I/O device control, user processes
bands optimize access to block devices (disk), allow
OS to respond quickly to system calls
penalizes CPU-bound processes w.r.t. I/O bound
targets general-purpose time sharing environment

19CMSC 412 – S04 (lect 5)

Windows NT

Target:
– single user, in highly interactive environment
– a server

preemptive scheduler with multiple priority levels
flexible system of priorities, RR within each, plus
dynamic variation on basis of current thread activity
for some levels
2 priority bands, real-time and variable, each with 16
levels
– real-time ones have higher priority, since require immediate

attention(e.g. communication, real-time task)

20CMSC 412 – S04 (lect 5)

Windows NT (cont.)

In real-time class, all threads have fixed priority that
never changes
In variable class, priority begins at an initial value,
and can change, up or down
– FIFO queue at each level, but thread can switch queues

Dynamic priority for a thread can be from 2 to 15
– if thread interrupted because time slice is up, priority lowered
– if interrupted to wait on I/O event, priority raised
– favors I/O-bound over CPU-bound threads
– for I/O bound threads, priority raised more for interactive

waits (e.g. keyboard, display) than for other I/O (e.g. disk)

21CMSC 412 – S04 (lect 5)

Multi-Processor Scheduling

Multiple processes need to be scheduled together
– Called gang-scheduling
– Allowing communicating processes to interact w/o/ waiting

Try to schedule processes back to same processor
– Called affinity scheduling

• Maintain a small ready queue per processor
• Go to global queue if nothing local is ready

