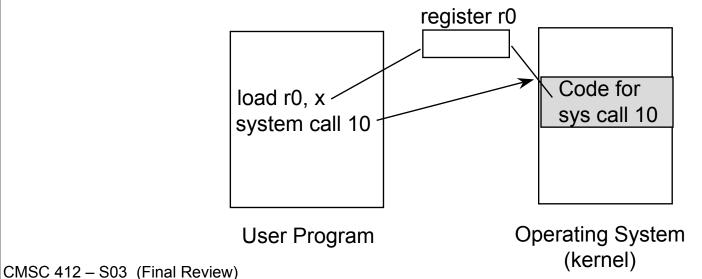
# Announcements

- Final is Sat at 8:00 in this room
- Project 4 & 5 Quiz was given in lecture
- Course evaluations were handed out

# What is an Operating System?

- Resource Manager
  - Resources include: CPU, memory, disk, network
  - OS allocates and de-allocates these resources
- Virtual Machine
  - provides an abstraction of a larger (or just different machine)
  - Examples:
    - Virtual memory looks like more memory
    - Java pseudo machine that looks like a stack machine
    - IBM VM a complete virtual machine (can boot multiple copies of an OS on it)
- Multiplexor
  - allows sharing of resources and protection
  - motivation is cost: consider a \$40M supercomputer


# What is an OS (cont)?

### Provider of Services

- includes most of the things in the above definition
- provide "common" subroutines for the programmer
  - windowing systems
  - memory management
- The software that is always loaded/running
  - generally refers to the Os kernel.
    - small protected piece of software
- All of these definitions are correct
  - **but** not all operating have all of these features

# System Calls

- Provide the interface between application programs and the kernel
- Are like procedure calls
  - take parameters
  - calling routine waits for response
- Permit application programs to access protected resources



# System Call Mechanism

- Use numbers to indicate what call is made
- Parameters are passed in registers or on the stack
- Why do we use indirection of system call numbers rather than directly calling a kernel subroutine?
  - provides protection since the only routines available are those that are export
  - permits changing the size and location of system call implementations without having to re-link application programs

# Policy vs. Mechanism

- Policy what to do
  - users should not be able to read other users files
- Mechanism- how to accomplish the goal
  - file protection properties are checked on open system call
- Want to be able to change policy without having to change mechanism
  - change default file protection
- Extreme examples of each:
  - micro-kernel OS all mechanism, no policy
  - MACOS policy and mechanism are bound together

### Processes

- What is a process?
  - a program in execution
  - "An execution stream in the context of a particular state"
  - a piece of code along with all the things the code can affect or be affected by.
    - this is a bit too general. It includes all files and transitively all other processes
  - only one thing happens at a time within a process
- What's not a process?
  - program on a disk a process is an active object, but a program is just a file

# **Process Creation**

- Who creates processes?
  - answer: other processes
  - operations is called fork (or spawn)
  - what about the first process?
- Have a tree of processes
  - parent-child relationship between processes
- what resources does the child get?
  - new resources from the OS
  - a copy of the parent resources
  - a subset of the parent resources
- What program does the child run?
  - a copy of the parent (UNIX fork)
    - a process may change its program (execve call in UNIX)
  - a new program specified at creation (VMS spawn)

CMSC 412 – S03 (Final Review)

# **Critical Section Problem**

### • processes must

- request permission to enter the region
- notify when leaving the region
- protocol needs to
  - provide mutual exclusion
    - only one process at a time in the critical section
  - ensure progress
    - no process outside a CS may block another process
  - guarantee bounded waiting time
    - limited number of times other processes can enter the critical section while another process is waiting
  - not depend on number or speed of CPUs
    - or other hardware resources
- May assume that some instructions are atomic
  - typically load, store, and test word instructions

CMSC 412 - S03 (Final Review)

# Deadlocks

## • System contains finite set of resources

- Process requests resource before using it, must release resource after use
- Process is in a deadlock state when every process in the set is waiting for an event that can be caused only by another process in the set
- 4 *necessary* deadlock conditions:
  - Mutual exclusion at least one resource must be held in a non-sharable mode
  - Hold and wait
  - No preemption
  - Circular wait

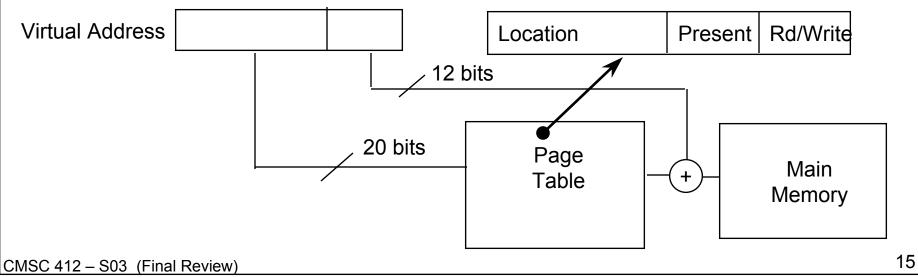
# **Deadlock Prevention**

- Ensure that one conditions for deadlock never holds
- Hold and wait
  - guarantee that when a process requests a resource, it does not hold any other resources
  - Each process could be allocated all needed resources before beginning execution
- Mutual exclusion
  - Sharable resources
- Circular wait
  - make sure that each process claims all resources in increasing order of resource type enumeration
- No Premption
  - virutalize resources and permit them to be prempted. For example, CPU can be prempted.

# Banker's Algorithm

- Each process must declare the maximum number of instances of each resource type it may need
- Maximum cannot exceed resources available to system
- Variables: (n is the number of processes, m is the number of resource types)
  - Available vector of length m indicating the number of available resources of each type
  - Max n by m matrix defining the maximum demand of each process
  - Allocation n by m matrix defining number of resources of each type currently allocated to each process
  - Need: n by m matrix indicating remaining resource needs of each process

# Short-term scheduling algorithms


- First-Come, First-Served (FCFS, or FIFO)
  - as process becomes ready, join Ready queue, scheduler always selects process that has been in queue longest
- Round-Robin (RR)
  - use preemption, based on clock time slicing
- Shortest Process Next (SPN)
  - non-preemptive
  - select process with shortest expected processing time
- Shortest Remaining Time (SRT)
  - preemptive version of SPN
  - scheduler chooses process with shortest expected remaining process time
- Priorities
  - assign each process a priority, and scheduler always chooses process of higher priority over one of lower priority

# Managing Memory

- Main memory is big, but what if we run out
  - use virtual memory
  - keep part of memory on disk
    - bigger than main memory
    - slower than main memory
- Want to have several program in memory at once
  - keeps processor busy while one process waits for I/O
  - need to protect processes from each other
  - have several tasks running at once
    - compiler, editor, debugger
    - word processing, spreadsheet, drawing program
- Use virtual addresses
  - look like normal addresses
  - hardware translates them to physical addresses

# Paging

- Divide physical memory into fixed sized chunks called *pages* 
  - typical pages are 512 bytes to 64k bytes
  - When a process is to be executed, load the pages that are actually used into memory
- Have a table to map virtual pages to physical pages
- Consider a 32 bit addresses
  - 4096 byte pages (12 bits for the page)
  - 20 bits for the page number



# **Inverted Page Tables**

- Solution to the page table size problem
- One entry per page frame of physical memory

<process-id, page-number>

- each entry lists process associated with the page and the page number
- when a memory reference:
  - <process-id,page-number,offset>occurs, the inverted page table is searched (usually with the help of a hashing mechanism)
  - if a match is found in entry *i* in the inverted page table, the physical address <i,offset> is generated
- The inverted page table does not store information about pages that are not in memory
  - page tables are used to maintain this information
  - page table need only be consulted when a page is brought in from disk

CMSC 412 – S03 (Final Review)

# What Happens when a virtual address has no physical address?

- called a page fault
  - a trap into the operating system from the hardware
- caused by: the first use of a page
  - called demand paging
  - the operating system allocates a physical page and the process continues
  - read code from disk or init data page to zero
- caused by: a reference to an address that is not valid
  - program is terminated with a "segmentation violation"
- caused by: a page that is currently on disk
  - read page from disk and load it into a physical page, and continue the program
- causde by: a copy on write page

# Page State (hardware view)

- Page frame number (location in memory or on disk)
- Valid Bit
  - indicates if a page is present in memory or stored on disk
- A modify or dirty bit
  - set by hardware on write to a page
  - indicates whether the contents of a page have been modified since the page was last loaded into main memory
  - if a page has not been modified, the page does not have to be written to disk before the page frame can be reused
- Reference bit
  - set by the hardware on read/write
  - cleared by OS
  - can be used to approximate LRU page replacement
- Protection attributes
  - read, write, execute

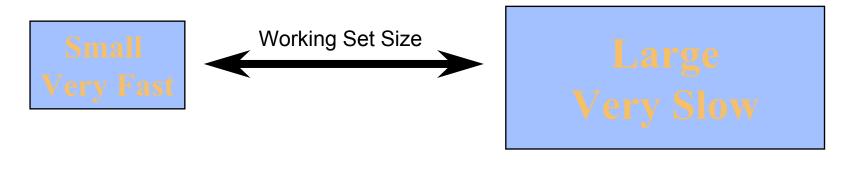
# Page Replacement Algorithms

### • FIFO

- Replace the page that was brought in longest ago
- However
  - old pages may be great pages (frequently used)
  - number of page faults may increase when one increases number of page frames (discouraging!)
    - called belady's anomaly
    - 1,2,3,4,1,2,5,1,2,3,4,5 (consider 3 vs. 4 frames)

### Optimal

- Replace the page that will be used furthest in the future
- Good algorithm(!) but requires knowledge of the future
- With good compiler assistance, knowledge of the future is sometimes possible


# Page Replacement Algorithms

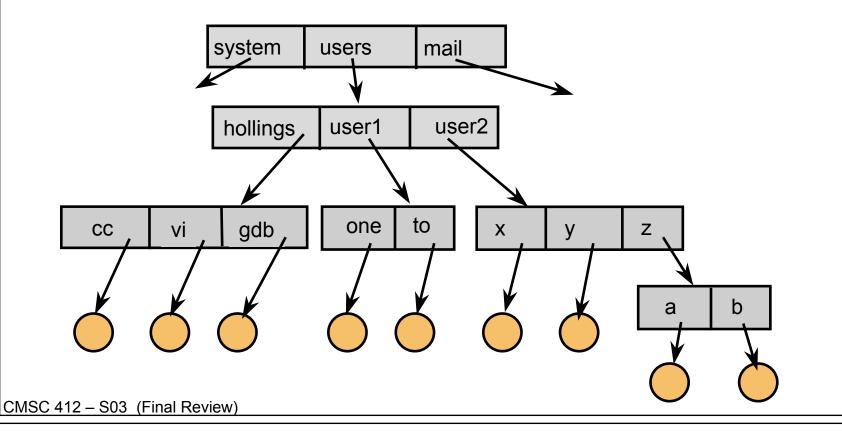
### • LRU

- Replace the page that was actually used longest ago
- Implementation of LRU can be a bit expensive
  - e.g. maintain a stack of nodes representing pages and put page on top of stack when the page is accessed
  - maintain a time stamp associated with each page
- Approximate LRU algorithms
  - maintain reference bit(s) which are set whenever a page is used
  - at the end of a given time period, reference bits are cleared

# Working Sets and Page Replacement

- Programs usually display reference locality
  - temporal locality
    - repeated access to the same memory location
  - spatial locality
    - consecutive memory locations access nearby memory locations
  - memory hierarchy design relies heavily on locality reference
    - sequence of nested storage media
- Working set
  - set of pages referenced in the last delta references




# File Abstraction

- What is a file?
  - A named collection of information stored on secondary storage
- Properties of a file
  - non-volatile
  - can read, read, or update it
  - has meta-data to describe attributes of the file
- File Attributes
  - name: a way to describe the file
  - type: some information about what is stored in the file
  - location: how to find the file on disk
  - size: number of bytes
  - protection: access control
    - may be different for read, write, execute, append, etc.
  - time: access, modification, creation
  - version: how many times has the file changed

CMSC 412 – S03 (Final Review)

# **Tree Directories**

- create a tree of files
- each directory can contain files or directory entries
- each process has a current directory
  - can name files relative to that directory
  - can change directories as needed



# File Protection

- How to give access to some users and not others?
- Access types:
  - read, write, execute, append, delete, list
  - rename: often based on protection of directory
  - copy: usually the same as read
- Degree of control
  - access lists
    - · list for each user for each file the permitted operations
  - groups
    - · enumerate users in a list called a group
    - provide same protection to all members of the group
    - depending on system:
      - files may be in one or many groups
      - users may be in one or many groups
  - per file passwords (tedious and a security problem)

CMSC 412 - S03 (Final Review)

# Filesystems

- Raw Disks can be viewed as:
  - a linear array of fixed sized units of allocation, called blocks
    - assume that blocks are error free (for now)
    - typical block size is 512 to 4096 bytes
  - can update a block in place, but must write the entire block
  - can access any block in any desired order
    - blocks must be read as a unit
    - for performance reasons may care about "near" vs. "far" blocks (but that is covered in a future lecture)

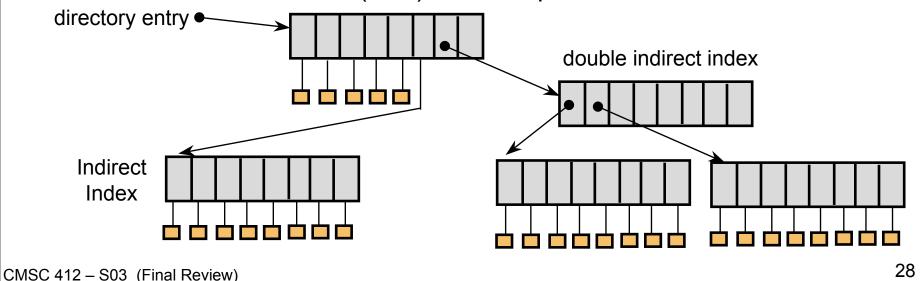
### • A Filesystem:

- provides a hierarchical namespace via directories
- permits files of variable size to be stored
- provides disk protection by restricting access to files based on permissions

# **Allocation Methods**

- How do we select a free disk block to use?
- Contiguous allocation
  - allocate a contiguous chunk of space to a file
  - directory entry indicates the starting block and the length of the file
  - easy to implement, but
    - how to satisfy a given sized request from a list of free holes?
    - two options
      - first fit (find the first gap that fits)
      - best fit (find the smallest gaps that is large enough)
    - What happens if one wants to append to file?
  - from time to time, one will need to repack files

# **Indexed Allocation**


- Bring all pointers together in an *index block* 
  - Each file has its own index block *i*th entry of index block points to *i*th block making up the file
- How large to make an index block?
  - unless one only wants to support fixed size files, index block scheme needs to be extensible
- Linked scheme:
  - maintain a linked list of indexed blocks
- Multilevel index:
  - Index block can point to other index blocks (which point to index blocks ....), which point to files
- Hybrid multi-level index
  - first n blocks are from a fixed index
  - next m blocks from an indirect index
  - next o blocks from a double indirect index

CMSC 412 - S03 (Final Review)

# Hybrid Multi-level Index (UNIX) Observations

### Observations

- most files are small
- most of the space on the disk is consumed by large files
- Want a flexible way to support different sized
  - assume 4096 byte block
  - first 12 blocks (48KB) are from a fixed index
  - next 1024 blocks (1MB) from an indirect index
  - next 1024<sup>2</sup> blocks (1GB) from a double indirect index
  - final 1024<sup>3</sup> blocks (1TB) from a triple indirect index



# **Disk Cache**

- Buffer in main memory for disk sectors
- Cache contains copy of some of the sectors on a disk. When I/O request is made for a sector, a check is made to find out if sector is in the disk cache
- Replacement strategy:
  - Least recently used: block that has been in the cache longest with no reference gets replaced
  - Least frequently used: block that experiences fewest references gets replaced

# **Disk Scheduling**

- First come, first served
  - ordering may lead to lots of disk head movement
- Shortest seek time first: select request with the minimum seek time from current head position
  - potential problem with distant tracks not getting service for an indefinite period
- Scan scheduling
  - read-write head starts at one end of the disk, moves to the other, servicing requests as it reaches each track
- C-Scan (circular scan)
  - disk head sweeps in only one direction
  - when the disk head reaches one end, it returns to the other

# Who do you trust?

- It's easy to get paranoid
- Do I trust a login prompt?
- Do I trust the OS that I got from the vendor?
- Do I trust the system staff?
  - should I encrypt all my files?
- Networking
  - do you trust the network provider?
  - do you trust the phone company?
- How do you bootstrap security?
  - always need one "out of band" transfer to get going

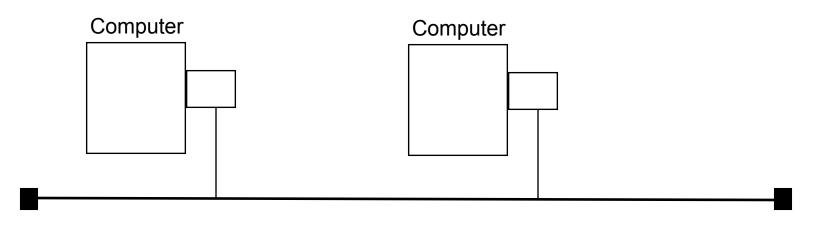
# Authentication

- How does the computer know who is using it?
  - need to exchange some information to verify the user
  - types of information exchanged:
    - pins
      - numeric passwords
      - too short to be secure in most cases
    - passwords
      - a string of letters and numbers
      - often easy to guess
    - challenge/response pairs
      - user needs to be apply to apply a specific algorithm
      - often involve use of a calculator like device
      - can be combined with passwords
    - unique attributes of the person
      - i.e. signature, thumb print, DNA?
      - sometimes these features can change during life

CMSC 412 – S03 (Final Review)

# Encryption: protecting info from being read

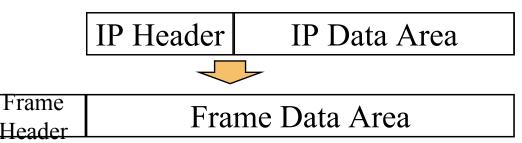
- Given a message m
  - use a key k, and function  $E_k$  to compute  $E_k(m)$
  - store or send only  $E_k(m)$
  - use a second second key k and function  $D_{k'}$  such that
    - $D_{k'}(E_k(m)) = m$
  - $E_k$  and  $D_{k'}$  need not be kept a secrete
- If k=k' it's called private key encryption
  - need to keep k secret
  - example DES
- if k != k', it's called public key encryption
  - need only keep one of them secret
  - if k' is secret, anyone can send a private message
  - if k is secret, it is possible to "sign" a message
  - still need a way to authenticate k or k' for a user
  - example RSA


CMSC 412 – S03 (Final Review)

# Sending Data

- Data is split into packets
  - limited size units of sending information
  - can be
    - fixed sized (ATM)
    - variable size (Ethernet)
- Need to provide a destination for the packet
  - need to identify two levels of information
    - machine to send data to
    - comm abstraction (e.g. process) to get data
  - address may be:
    - a globally unique destination
      - for example every host has a unique id
    - may unique between hops
      - unique id between two switches

# Ethernet


- 10 Mbps (to 100 Mbps)
- mili-second latency
- limited to several kilometers in distance
- variable sized units of transmission
- bus based protocol
  - requests to use the network can collide
- addresses are 48 bits
  - unique to each interface



# Encapsulation

How do we send higher layer packets over lower layers?

- Higher level info is opaque to lower layers
  - it's just data to be moved from one point to another



- Higher levels may support larger sizes than lower
  - could need to *fragment* a higher level packet
    - split into several lower level packets
    - need to re-assemble at the end
  - examples:
    - ATM cells are 48 bytes, but IP packets can be 64K
    - IP packets are 64K, but files are megabytes

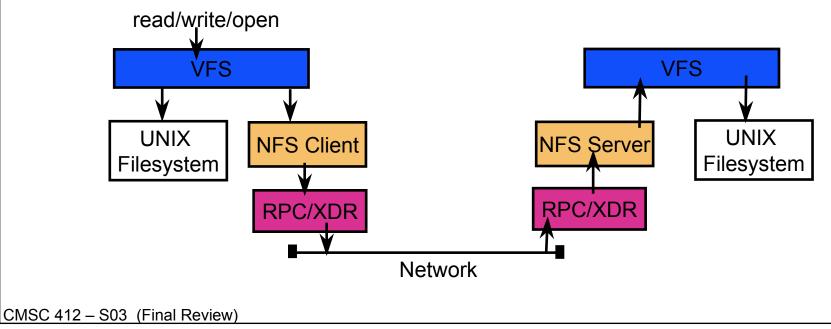
# Routing

- How does a packet find its destination?
  - problem is called routing
- Several options:
  - source routing
    - · end points know how to get everywhere
    - each packet is given a list of hops before it is sent
  - hop-by-hop
    - each host knows for each destination how to get one more hop in the right direction
- Can route packets:
  - per session
    - · each packet in a connection takes same path
  - per packet
    - packets may take different routes
    - possible to have out of order delivery

# **Remote Procedure Calls**

- Provide a way to access remotes services
- Look like "normal" procedure calls
- Issues:
  - binding functions to services
    - can use static binding (like kernel trap #'s)
    - can use a nameserver
  - data format
    - different machine may have different formats
    - translation is called *marshalling* 
      - pick a common way to encode info (e.g. XDR)
      - always send in this common format
  - failures
    - what if a host dies while and RPC is active?

# **Distributed Filesystems**


• Provide the same semantics as a local filesystem

- data is stored at various locations in the system
  - often stored in central fileservers
  - can be stored in serverless fileservers
- Naming
  - location transparency
    - · filenames don't imply information about location
  - location independence
    - can move the file without changing names
  - naming files
    - host:local-name
      - not transparent
    - global-name
      - transparent, requires something to coordinate names

CMSC 412 – S03 (Final Review)

# NFS

- Provides a way to mount remote filesystems
  - can be done explicitly
  - can be done automatically (called an automounter)
  - clients are provided "file handle" by the server for future use
- Uses VFS: extended UNIX filesystem
  - inodes are replaced by vnodes
    - network wide unique inodes
    - can refer to local or remote files



# AFS

- Designed to scale to 5,000 or more workstations
- Location independent naming
  - within a single cell
- volumes
  - basic unit of management
  - can vary in size
  - can be migrated among servers
- names are mapped to "fids"
  - 96 bit unique id's for a file
  - three parts: volume, vnode, and uniqidentifier
  - location information is stored in a volume to location DB
    - replicated on every server

# AFS (cont.)

### • File Access

- open: file is transferred from server to client
  - · very large files may only be partially transferred
- read/write: performed on the client
- close: file (if dirty) is written back to server
  - can fail if the disk is full
- Consistency
  - clients have callbacks
  - sever informs client when another client writes data
  - only applies to open operation
  - only requires communication when:
    - more than one client wants to write
    - · one client wants to write and others to read