
1CMSC 412 – S03 (lect 24) copyright 2002 Jeffrey K. Hollingsworth

Announcements

Project #5 is available
No Class on Thursday
No Office hours on Friday

2CMSC 412 – S03 (lect 24) copyright 2002 Jeffrey K. Hollingsworth

Project #5 Notes

Uid
– First process has uid of 0
– Spawned processes

• Inherit uid of parent
• Unless setuid bit is set on program to run, then the uid of

the owner of that file is used
ACLs
– First ACL entry is owner
– Others are for other users

• Can delete these entires with setACl(file, uid, 0)
– Uid 0 can open any file regardless of ACLs

3CMSC 412 – S03 (lect 24) copyright 2002 Jeffrey K. Hollingsworth

File Server State

Does the fileserver maintain information between
requests?
Stateless
– example: NFS
– each request contains a request to read/write a specific part

of a file
– requests must be itempotent

• the same request can be applied several times
– makes recovery of failed clients/servers easier

Stateful
– example: AFS
– servers maintain connections for clients
– improves performance
– required for server based cache management

4CMSC 412 – S03 (lect 24) copyright 2002 Jeffrey K. Hollingsworth

/

Mounting a filesystem

Mount attaches a filesystem to a directory
– can be used for local or remote (NFS) filesystems

/

fs

mashie2

Before Mount

filesystem
to mount

hollings

bin

/

/

fs

mashie2

hollings

binmount point

5CMSC 412 – S03 (lect 24) copyright 2002 Jeffrey K. Hollingsworth

NFS
Provides a way to mount remote filesystems
– can be done explicitly
– can be done automatically (called an automounter)
– clients are provided “file handle” by the server for future use

Uses VFS: extended UNIX filesystem
– inodes are replaced by vnodes

• network wide unique inodes
• can refer to local or remote files

VFS

NFS ClientUNIX
Filesystem

RPC/XDR

VFS

UNIX
Filesystem

NFS Server

RPC/XDR

Network

read/write/open

6CMSC 412 – S03 (lect 24) copyright 2002 Jeffrey K. Hollingsworth

NFS (cont.)

Requests
– are sent via RPC to the server
– include read/write
– query: lookup this directory info

• must be done one step (directory) at a time
– change meta data: file permissions, etc.

Popular due to free implementations
Provides no coherency

7CMSC 412 – S03 (lect 24) copyright 2002 Jeffrey K. Hollingsworth

AFS

Designed to scale to 5,000 or more workstations
Location independent naming
– within a single cell

volumes
– basic unit of management
– can vary in size
– can be migrated among servers

names are mapped to “fids”
– 96 bit unique id’s for a file
– three parts: volume, vnode, and uniqidentifier
– location information is stored in a volume to location DB

• replicated on every server

8CMSC 412 – S03 (lect 24) copyright 2002 Jeffrey K. Hollingsworth

AFS (cont.)

File Access
– open: file is transferred from server to client

• very large files may only be partially transferred
– read/write: performed on the client
– close: file (if dirty) is written back to server

• can fail if the disk is full
Consistency
– clients have callbacks
– sever informs client when another client writes data
– only applies to open operation
– only requires communication when:

• more than one client wants to write
• one client wants to write and others to read

9CMSC 412 – S03 (lect 24) copyright 2002 Jeffrey K. Hollingsworth

Display and Window Management

The screen is a resource in a workstation system
– multiple processes desire to access the device and control it
– OS needs to provide abstractions to permit the interaction

Services
– protection
– windows
– multiplex keyboard and mouse
– configuration and placement

Issues
– how to get good performance and remain device

independent
– how much policy to dictate to users

10CMSC 412 – S03 (lect 24) copyright 2002 Jeffrey K. Hollingsworth

My Research Interests

Parallel Computing
– There are limits to how fast one processor can run
– solution: use more than one processor

Issues in parallel computing design
– do the processors share memory?

• is the memory “uniform”?
• how do processors cache memory?

– if not how do they communicate?
• message passing
• what is the latency of message passing

11CMSC 412 – S03 (lect 24) copyright 2002 Jeffrey K. Hollingsworth

Parallel Processing

What happens in parallel?
Several different processing steps
– pipeline
– simple example: grep foo | sort > out
– called: multiple instruction multiple data (MIMD)

The same operation
– every processor runs the same instruction (or no-instruction)
– called: single instruction multiple data (SIMD)
– good for image processing

The same program
– every processor runs the same program, but not “lock step”
– called: single program multiple data (SPMD)
– most common model

12CMSC 412 – S03 (lect 24) copyright 2002 Jeffrey K. Hollingsworth

Issues in effective Parallel Computation

Load balancing
– every processor should to have some work to do.

Latency hiding/avoidance
– getting data from other processors (or other disks) is slow
– need to either:

• hide the latency
– processes can “pre-fetch” data before they need it
– block and do something else while waiting

• avoid the latency
– use local memory (or cache)
– use local disk (of file buffer cache)

Limit communication bandwidth
– use local data
– use “near” data (i.e. neighbors)

13CMSC 412 – S03 (lect 24) copyright 2002 Jeffrey K. Hollingsworth

My Research:

Given a parallel program and a machine
Try to answer performance related questions
– Why is the programming running so slowly?
– How do I fix it?

Issues:
– how to measure a program without changing it?
– how do you find (and then present) the performance

problem, not tons of statistics?
Techniques:
– dynamic data collection
– automated search
– analysis of process interactions

