Announcements

e Reading:
— Today: Chapter 9.4-9.6
— Thursday: Chapter 10

e Office hours are only for those who attend class

e Midterm was returned
— All re-grade requests must:
* Be in writing
* Be submitted by 10:45 AM 3/18/03

— Any re-grade request will result in the entire exam being re-
graded higher or lower as appropriate.

P1 p2 p3 p4 pS Tot
Min 7 0 0 0 0 7
Max 20 25 20 15 20 96
Average 14.8 16.1 9.4 7.8 12.5 60.6
StdDec 18.6

CMSC 412 — S03 (lect 11)




Managing Memory

e Main memory is big, but what if we run out
— use virtual memory
— keep part of memory on disk
* bigger than main memory
 slower than main memory

e \Want to have several program in memory at once
— keeps processor busy while one process waits for /O
— need to protect processes from each other
— have several tasks running at once
« compiler, editor, debugger
« word processing, spreadsheet, drawing program

e Use virtual addresses
— look like normal addresses
— hardware translates them to physical addresses

CMSC 412 — S03 (lect 11)




Advantages of Virtual Addressing

e Can assign non-contiguous regions of physical
memory to programs

e A program can only gain access to its mapped pages

e Can have more virtual pages than the size of physical
memory
— pages that are not in memory can be stored on disk

e Every program can start at (virtual) address O

CMSC 412 — S03 (lect 11)




e Divide physical memory into fixed sized chunks

called pages

Paging

— typical pages are 512 bytes to 64k bytes

— When a process is to be executed, load the pages that are
actually used into memory

e Have a table to map virtual pages to physical pages

e Consider a 32 bit addresses

— 4096 byte pages (12 bits for the page)
— 20 bits for the page number

Virtual Address Location Present | Rd/Writg
| _ 12bits Y N
. &
% 20 bits Page Main
- Table
Memory

CMSC 412 — S03 (lect 11)




Problems with Page Tables

e One page table can get very big

— 220 entries (for most programs, most items are empty)

e solution1: use a hierarchy of page tables

Virtual Address

\ | 12bits
7
Page Tabl

10 bits
v

10 bits % -

/] Page
Directory

—> Pg Tbl Ptr

> Physical Page #

CMSC 412 — S03 (lect 11)

py

Main
Memory




Inverted Page Tables

e Solution to the page table size problem

e One entry per page frame of physical memory
<process-id, page-number>

— each entry lists process associated with the page and the page
number

— when a memory reference:

» <process-id,page-number,offset>occurs, the inverted page
table is searched (usually with the help of a hashing
mechanism)

« if a match is found in entry i in the inverted page table, the
physical address <i,offset> is generated

— The inverted page table does not store information about pages
that are not in memory

» page tables are used to maintain this information

* page table need only be consulted when a page is brought in
from disk

CMSC 412 — S03 (lect 11)




Inverted Page Table Example (PPC)

Virtual Address

4

16 12

Seg

Page # Byte

\ Virtual Segment ID

24
Status bits
140 VS ID (40)
Hash Function Physical page (20)
/ Page Table Entry (PTE)
p Bl
/ Page
Page Table Group Table
8 page table entries (variable size)

CMSC 412 — S03 (lect 11)

one per system

Main
Memory




Faster Mapping from Virtual to Physical
Addresses

e need hardware to map between physical and virtual
addresses
— can require multiple memory references
— this can be slow

e answer: build a cache of these mappings
+ called a translation look-aside buffer (TLB)

« associative table of virtual to physical mappings
* typically 16- 64 entries

Valid ~a Virtual Page Physical Page

20 bits 20 bits < For Intel x86

CMSC 412 — S03 (lect 11)




