
1CMSC 412 – S03 (lect 9)

Announcements
Midterm is next Thursday
– Covers through today’s lecture

Reading
– Chapter 7 – can skip 7.7 & 7.9
– Today Chapter 8

Project #2 will be available on the web

Suggested problems:
– 7.1, 7.2, 7.6, 7.8, 7.9, 7.15, 7.18

2CMSC 412 – S03 (lect 9)

Writers Have Priority
reader
repeat

P(z);
P(rsem);
P(x);

readcount++;
if (readcount == 1) then

P(wsem);
V(x);
V(rsem);

V(z);
readunit;
P(x);

readcount- -;
if readcount == 0 then

V (wsem)
V(x)

forever

writer
repeat

P(y);
writecount++:
if writecount == 1 then

P(rsem);
V(y);
P(wsem);
writeunit
V(wsem);
P(y);

writecount--;
if (writecount == 0) then

V(rsem);
V(y);

forever;

3CMSC 412 – S03 (lect 9)

Notes on readers/writers with writers
getting priority

P(z);
P(rsem);
P(x);

readcount++;
if (readcount==1) then

P(wsem);
V(x);
V(rsem);

V(z);

readers queue up on semaphore
z; this way only a single reader
queues on rsem. When a writer
signals rsem, only a single
reader is allowed through

Semaphores x,y,z,wsem,rsem are initialized to 1

4CMSC 412 – S03 (lect 9)

Deadlocks

System contains finite set of resources
– memory space
– printer
– tape
– file
– access to non-reentrant code

Process requests resource before using it,
must release resource after use
Process is in a deadlock state when every
process in the set is waiting for an event that
can be caused only by another process in the
set

5CMSC 412 – S03 (lect 9)

Formal Deadlocks

4 necessary deadlock conditions:
– Mutual exclusion - at least one resource must be

held in a non-sharable mode, that is, only a single
process at a time can use the resource. If another
process requests that resource, the requesting
process must be delayed until the resource is
released

– Hold and wait - There must exist a process that is
holding at least one resource and is waiting to
acquire additional resources that are currently
held by other processors

6CMSC 412 – S03 (lect 9)

Formal Deadlocks

– No preemption: Resources cannot be preempted;
a resource can be released only voluntarily by the
process holding it, after that process has
completed its task

– Circular wait: There must exist a set {P0,...,Pn} of
waiting processes such that P0 is waiting for a
resource that is held by P1, P1 is waiting for a
resource held by P2 etc.

Note that these are not sufficient conditions

7CMSC 412 – S03 (lect 9)

Deadlock Prevention
Ensure that one (or more) of the necessary
conditions for deadlock do not hold
Hold and wait
– guarantee that when a process requests a

resource, it does not hold any other resources
– Each process could be allocated all needed

resources before beginning execution
– Alternately, process might only be allowed to wait

for a new resource when it is not currently holding
any resource

8CMSC 412 – S03 (lect 9)

Deadlock Prevention

Mutual exclusion
– Sharable resources do not require mutually

exclusive access and cannot be involved in a
deadlock.

Circular wait
– Impose a total ordering on all resource types and make sure

that each process claims all resources in increasing order of
resource type enumeration

No Premption
– virutalize resources and permit them to be prempted. For

example, CPU can be prempted.

9CMSC 412 – S03 (lect 9)

Deadlock Avoidance

Require additional information about how resources
are to be requested - decide to approve or
disapprove requests on the fly
Assume that each process lets us know its maximum
resource request
Safe state:
– system can allocate resources to each process (up to its

maximum) in some order and still avoid a deadlock
– A system is in a safe state if there exists a safe sequence

10CMSC 412 – S03 (lect 9)

Safe Sequence

Sequence of processes <P1, .. Pn> is a safe
sequence if for each Pi, the resources that Pi can
request can be satisfied by the currently available
resources plus the resources held by all Pj, j<i
If the necessary resources are not immediately
available, Pi can always wait until all Pj, j<i have
completed

11CMSC 412 – S03 (lect 9)

Banker’s Algorithm
Each process must declare the maximum number of
instances of each resource type it may need
Maximum can’t exceed resources available to system
Variables:
n is the number of processes
m is the number of resource types
– Available - vector of length m indicating the number of available

resources of each type
– Max - n by m matrix defining the maximum demand of each

process
– Allocation - n by m matrix defining number of resources of each

type currently allocated to each process
– Need: n by m matrix indicating remaining resource needs of

each process

12CMSC 412 – S03 (lect 9)

Work is a vector of length m (resources)
Finish is a vector of length n (processes)

1. Work = Available; Finish = false
2. Find an i such that Finish[i] = false and Needi <=

Work if no such i, go to 4
3. Work += Allocationi; Finish[i] = true; goto step 2
4. If Finish[i] = true for all i, system is in a safe state

Note this requires m x n2 steps

all elements
in the vector
are <=

13CMSC 412 – S03 (lect 9)

Banker’s Algorithm - Example

Alloc Max Avail Need
A B C A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2 7 4 3
P1 2 0 0 3 2 2 1 2 2
P2 3 0 2 9 0 2 6 0 0
P3 2 1 1 2 2 2 0 1 1
P4 0 0 2 4 3 3 4 3 1

Three resources: A, B, C (10, 5, 7 instances each)

Consider the snapshot of the system at this time Max - alloc

System is in a safe state, since the sequence <P1, P3, P4, P2, P0> satisfy the
safety criteria.

14CMSC 412 – S03 (lect 9)

Resource Request Algorithm
(1) If Requesti <= Needi then goto 3

– otherwise - the process has exceeded its maximum claim

(2) If Requesti <= Available then goto 3
– otherwise process must wait since resources are not available

(3) Check request by having the system pretend that it has
allocated the resources by modifying the state as follows:
– Available =Available - Requesti
– Allocation = Allocation + Requesti
– Needi = Needi - Requesti

Find out if resulting resource allocation state is safe, otherwise
the request must wait.

