Announcements

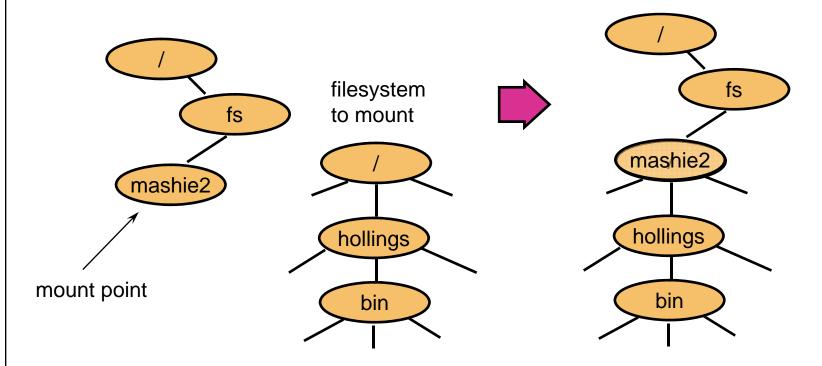
- Project #6 is due Tuesday at 6:00 PM
- Office Hours Next Week
 - Jeff
 - Tu 11-12
 - Th 11-12
 - Tas
 - Johnny: Wed
 - Austin: Normal
 - Review session:
 - W 10-12 (1121 CSIC)
- Course Evaluations
 - Please fill them out!

Distributed Systems

- A unified view of local and remote access
- Typical Services
 - data migration
 - provide only the data required, not the whole file
 - manage multiple copies as versions of the same object
 - process migration
 - a process can move from one machine to another
 - reasons for migration:
 - load balancing
 - data affinity
 - hardware/software preference (better configuration)

Distributed OS Design Issues

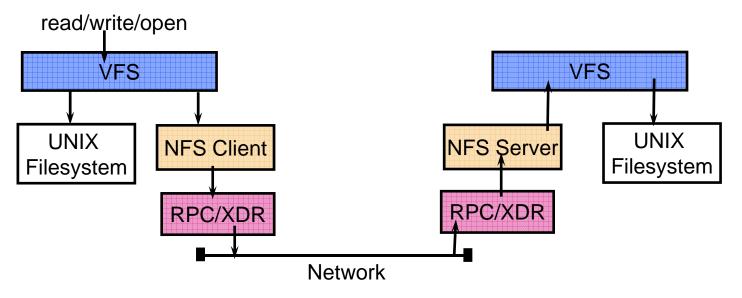
- Should provide same model as a central system
 - easy to understand for users
- Needs to be scaleable
 - will it work with 100, 1,000, or 10,000 nodes?
- Failure Modes
 - avoid a single central failure point
 - can loss performance or functionality with failure
 - but loss should be proportional to size of failure
- Security
 - should provide same guarantees on data integrity as a local system


File Server State

- Does the fileserver maintain information between requests?
- Stateless
 - example: NFS
 - each request contains a request to read/write a specific part of a file
 - requests must be *itempotent*
 - the same request can be applied several times
 - makes recovery of failed clients/servers easier
- Stateful
 - example: AFS
 - servers maintain connections for clients
 - improves performance
 - required for server based cache management

Mounting a filesystem

- Mount attaches a filesystem to a directory
 - can be used for local or remote (NFS) filesystems


Before Mount

5

NFS

- Provides a way to mount remote filesystems
 - can be done explicitly
 - can be done automatically (called an automounter)
 - clients are provided "file handle" by the server for future use
- Uses VFS: extended UNIX filesystem
 - inodes are replaced by vnodes
 - network wide unique inodes
 - can refer to local or remote files

6

NFS (cont.)

- Requests
 - are sent via RPC to the server
 - include read/write
 - query: lookup this directory info
 - must be done one step (directory) at a time
 - change meta data: file permissions, etc.
- Popular due to free implementations
- Provides no coherency

AFS

- Designed to scale to 5,000 or more workstations
- Location independent naming
 - within a single cell
- volumes
 - basic unit of management
 - can vary in size
 - can be migrated among servers
- names are mapped to "fids"
 - 96 bit unique id's for a file
 - three parts: volume, vnode, and uniqidentifier
 - location information is stored in a volume to location DB
 - replicated on every server

AFS (cont.)

File Access

- open: file is transferred from server to client
 - very large files may only be partially transferred
- read/write: performed on the client
- close: file (if dirty) is written back to server
 - can fail if the disk is full

Consistency

- clients have callbacks
- sever informs client when another client writes data
- only applies to open operation
- only requires communication when:
 - more than one client wants to write
 - one client wants to write and others to read

Display and Window Management

- The screen is a resource in a workstation system
 - multiple processes desire to access the device and control it
 - OS needs to provide abstractions to permit the interaction

Services

- protection
- windows
- multiplex keyboard and mouse
- configuration and placement

Issues

- how to get good performance and remain device independent
- how much policy to dictate to users

My Research Interests

- Parallel Computing
 - There are limits to how fast one processor can run
 - solution: use more than one processor
- Issues in parallel computing design
 - do the processors share memory?
 - is the memory "uniform"?
 - how do processors cache memory?
 - if not how do they communicate?
 - message passing
 - what is the latency of message passing

Parallel Processing

- What happens in parallel?
- Several different processing steps
 - pipeline
 - simple example: grep foo | sort > out
 - called: multiple instruction multiple data (MIMD)
- The same operation
 - every processor runs the same instruction (or no-instruction)
 - called: single instruction multiple data (SIMD)
 - good for image processing
- The same program
 - every processor runs the same program, but not "lock step"
 - called: single program multiple data (SPMD)
 - most common model

Issues in effective Parallel Computation

- Getting enough parallelism
 - Limited by what is left serial
 - Even 10% serial limited to a speedup of 10x even with infinite numbers of processors
- Load balancing
 - every processor should to have some work to do.
- Latency hiding/avoidance
 - getting data from other processors (or other disks) is slow
 - need to either:
 - hide the latency
 - processes can "pre-fetch" data before they need it
 - block and do something else while waiting
 - avoid the latency
 - use local memory (or cache)
 - use local disk (of file buffer cache)
- Limit communication bandwidth
 - use local data
 - use "near" data (i.e. neighbors)

My Research:

- Given a parallel program and a machine
- Try to answer performance related questions
 - Why is the programming running so slowly?
 - How do I fix it?

Issues:

- how to measure a program without changing it?
- how do you find (and then present) the performance problem, not tons of statistics?

Techniques:

- dynamic data collection
- automated search
- analysis of process interactions

Introduction

- Software today
 - makes extensive use of libraries and re-usable components
 - Libraries used by an application may not be tuned to the application's need
- Fast software development/distribution with built-in (default) configurations
 - Applications may not run well in all environments
 - There may be no single configuration good for all environments

Large Scale Computing

- Today (12/2011)
 - 12 systems with more than 128k processors
 - More than 50 systems >= 16k processors
 - World's fastest computer (K in Japan)
 - 705,024 SPARC cores
 - 1.4 petabytes of RAM (1,410,048 GB)
 - Uses 12.659 MW of electricity