Announcements

e Reading
— Today Chapter 11 (8™ ed) or 12 (6™ ed)
— Tuesday Chapter 12 (8" ed) or 13 (6™ ed)

e Project #4b deadline is Friday Nov 11th

CMSC 412 — F11 (lect 18)




DOS Directories

e Root directory
— Immediately follows the FAT

e Directory is a table of 32 byte entries
— 8 byte file name, 3 byte filename extension

— size of file, data and time stamp, starting cluster number of
the file, file attribute codes

— Fixed size and capacity
e Subdirectory
— This is just a file

— Record of where the subdirectory is located is stored in the
FAT

CMSC 412 — F11 (lect 18)




Implementing Directories

e Linear List
— array of names for files
— must search entire list to find or allocate a filename
— sorting can improve search performance, but adds
complexity
e Hash table
— use hash function to find filenames in directory
— needs a good hash function
— need to resolve collisions

— must keep table small and expand on demand since many
directories are mostly empty

CMSC 412 — F11 (lect 18)




Unix Directories

e Space for directories are allocated in units called
chunks

— Size of a chunk is chosen so that each allocation can be
transferred to disk in a single operation

— Chunks are broken into variable-length directory entries to
allow filenames of arbitrary length

— No directory entry can span more than one chunk
— Directory entry contains
« pointer to inode (file data-structure)
» size of entry
 length of flename contained in entry (up to 255)
e remainder of entry is variable length - contains file name

CMSC 412 — F11 (lect 18)




Inodes

e File iIndex node

e Contains:

— Pointers to blocks in a file (direct, single indirect, double
Indirect, triple indirect)

— Type and access mode

— File’s owner

— Number of references to file
— Size of file

— Number of physical blocks

CMSC 412 — F11 (lect 18)




Unix directories - links

e Each file has unique inode but it may have multiple
directory entries in the same filesystem to reference

Inode

e Each directory entry creates a hard link of a filename

to the file’s inode
— Number of links to file are kept in reference count variable in
Inode
— If links are removed, file is deleted when number of links
becomes zero

e Symbolic or soft link
— Implemented as a file that contains a pathname

— Symbolic links do not have an effect on inode reference
count

CMSC 412 — F11 (lect 18)




File Looku

I

Root inode =2

0 (/usr/bin/vi)

Directory Entry ST .

.
>

Inode

Directory Entry bin

y&.

Directory Entry

Data Block

CMSC 412 — F11 (lect 18)

Inode

1L114]

Indirect

| LLLdoLd

|_®

Ghooooo




Using UNIX filesystem data structures

e Example: find /usr/bin/vi
— from Leffler, McKusick, Karels and Quarterman

— Search root directory of filesystem to find /usr
» root directory inode is, by convention, stored in inode #2

« inode shows where data blocks are for root directory - these
blocks (not the inode itself) must be retrieved and searched for
entry user

« we discover that the directory user’s inode is inode #4
— Search user for bin

» access blocks pointed to by inode #4 and search contents of
blocks for entry that gives us bin’s inode

 we discover that bin’s inode is inode #7
— Search bin for vi

» access blocks pointed to by inode #7 and search contents of
block for an entry that gives us vi's inode

 we discover that vi's inode is inode #7
— Access inode #7 -this is vi's inode

CMSC 412 — F11 (lect 18)




How to Improve Speed?

e Use A Cache

e Name-to-lnode lookup
— Hash on full path name
— Find inode without and disk accesses on a hit

CMSC 412 — F11 (lect 18)




Mount System Call

e How to attach a file system into a name space?

e Simple ldea:

— use letters C, D, E, etc.
— use volume names (VMS) — fixed length string

e Better Idea:

— Allow attachment at arbitrary points in namespace
— Designate one tree as the “root” file system
— Others are attached to the root

e Mount used In:

— UNIX

— Windows (NTFS mount points)

— GeekOS

CMSC 412 — F11 (lect 18)

10




