
1CMSC 412 – F11 (lect 12)

Announcements

� Midterm #1

– Will be in class on Thursday

� Project #3

– Handout is on the Web site

2CMSC 412 – F11 (lect 12)

Sharing Memory

� Pages can be shared
– several processes may share the same code or data

– several pages can be associated with the same page frame

– given read-only data, sharing is always safe

� when writes occur, decide if processes share data
– operating systems often implement “copy on write” - pages

are shared until a process carries out a write

• when a shared page is written, a new page frame is
allocated

• writing process owns the modified page

• all other sharing processes own the original page

– page could be shared

• processes use semaphores or other means to coordinate
access

3CMSC 412 – F11 (lect 12)

Page Sharing

Page

Directory

Page

Directory
Page Table

Page

Frames
Page Table

P1 P2

Shared

Pages

4CMSC 412 – F11 (lect 12)

What Happens when a virtual address
has no physical address?

� called a page fault

– a trap into the operating system from the hardware

� caused by: the first use of a page

– called demand paging

– the operating system allocates a physical page and the
process continues

– read code from disk or init data page to zero

� caused by: a reference to an address that is not valid

– program is terminated with a “segmentation violation”

� caused by: a page that is currently on disk

– read page from disk and load it into a physical page, and
continue the program

� causde by: a copy on write page

5CMSC 412 – F11 (lect 12)

– NOACCESS: attempts to read, write or execute will cause an access
violation

– READONLY: attempts to write or execute memory in this region cause
an access violation

– READWRITE: attempts to execute memory in this region cause an
access violation

– EXECUTE: Attempts to read or write memory in this region cause an
access violation

– EXECUTE_READ: Attempts to write to memory in this region cause an
access violation

– EXECUTE_READ_WRITE: Do anything to this page

– WRITE_COPY: Attempts to write will cause the system to give a
process its own copy of the page. Attempts to execute cause access
violation

– EXECUTE_WRITE_COPY: Attempts to write will cause the system to
give a process its own copy of a page. Can’t cause an access violation

OS Protection attributes (Win32)

6CMSC 412 – F11 (lect 12)

Handling a page fault

1) Check if the reference is valid

– if not, terminate the process

2) Find a page frame to allocate for the new process

– for now we assume there is a free page frame.

3) Schedule a read operation to load the page from disk

– we can run other processes while waiting for this to complete

4) Modify the page table entry to the page

5) Restart the faulting instruction

– hardware normally will abort the instruction so we just return
from the trap to the correct location.

7CMSC 412 – F11 (lect 12)

Page Fault – Page is Paged out

Page

Directory
Page Table

Page

Frames

P1

Reference

To this page 1) Fault

2) Read from Disk

3) Make

Entry

4) Continue

8CMSC 412 – F11 (lect 12)

Page State (hardware view)
� Page frame number (location in memory or on disk)

� Valid Bit
– indicates if a page is present in memory or stored on disk

� A modify or dirty bit
– set by hardware on write to a page

– indicates whether the contents of a page have been modified
since the page was last loaded into main memory

– if a page has not been modified, the page does not have to
be written to disk before the page frame can be reused

� Reference bit
– set by the hardware on read/write

– cleared by OS

– can be used to approximate LRU page replacement

� Protection attributes
– read, write, execute

9CMSC 412 – F11 (lect 12)

What happens when we fault and there
are no more physical pages?

� Need to remove a page from main memory

– if it is “dirty” we must store it to disk first.

• dirty pages have been modified since they were last
stored on disk.

� How to we pick a page?

– Need to choose an appropriate algorithm

• should it be global?

• should it be local (one owned by the faulting process)

10CMSC 412 – F11 (lect 12)

Page Replacement Algorithms
� FIFO

– Replace the page that was brought in longest ago

– However

• old pages may be great pages (frequently used)

• number of page faults may increase when one increases number of
page frames (discouraging!)

– called belady’s anomaly

– 1,2,3,4,1,2,5,1,2,3,4,5 (consider 3 vs. 4 frames)

� Optimal

– Replace the page that will be used furthest in the future

– Good algorithm(!) but requires knowledge of the future

– With good compiler assistance, knowledge of the future is
sometimes possible

11CMSC 412 – F11 (lect 12)

Page Replacement Algorithms

� LRU

– Replace the page that was actually used longest ago

– Implementation of LRU can be a bit expensive

• e.g. maintain a stack of nodes representing pages and
put page on top of stack when the page is accessed

• maintain a time stamp associated with each page

� Approximate LRU algorithms

– maintain reference bit(s) which are set whenever a page is
used

– at the end of a given time period, reference bits are cleared

12CMSC 412 – F11 (lect 12)

FIFO Example (3 frames)

– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

• access 1 - (1) fault

• access 2 - (1,2) fault

• access 3- (1,2,3) fault

• access 4 - (2,3,4) fault, replacement

• access 1 - (3,4,1) fault, replacement

• access 2 - (4,1,2) fault, replacement

• access 5 - (1,2,5) fault, replacement

• access 1- (1,2,5)

• access 2 - (1,2,5)

• access 3 - (2,5,3) fault, replacement

• access 4 - (5,3,4) fault, replacement

• access 5 - (5,3,4)

– 9 page faults

13CMSC 412 – F11 (lect 12)

Page Replacement Algorithms
� FIFO

– Replace the page that was brought in longest ago

– However

• old pages may be great pages (frequently used)

• number of page faults may increase when one increases number of
page frames (discouraging!)

– called belady’s anomaly

– 1,2,3,4,1,2,5,1,2,3,4,5 (consider 3 vs. 4 frames)

� Optimal

– Replace the page that will be used furthest in the future

– Good algorithm(!) but requires knowledge of the future

– With good compiler assistance, knowledge of the future is
sometimes possible

14CMSC 412 – F11 (lect 12)

Page Replacement Algorithms

� LRU

– Replace the page that was actually used longest ago

– Implementation of LRU can be a bit expensive

• e.g. maintain a stack of nodes representing pages and
put page on top of stack when the page is accessed

• maintain a time stamp associated with each page

� Approximate LRU algorithms

– maintain reference bit(s) which are set whenever a page is
used

– at the end of a given time period, reference bits are cleared

15CMSC 412 – F11 (lect 12)

FIFO Example (3 frames)

– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

• access 1 - (1) fault

• access 2 - (1,2) fault

• access 3- (1,2,3) fault

• access 4 - (2,3,4) fault, replacement

• access 1 - (3,4,1) fault, replacement

• access 2 - (4,1,2) fault, replacement

• access 5 - (1,2,5) fault, replacement

• access 1- (1,2,5)

• access 2 - (1,2,5)

• access 3 - (2,5,3) fault, replacement

• access 4 - (5,3,4) fault, replacement

• access 5 - (5,3,4)

– 9 page faults

16CMSC 412 – F11 (lect 12)

LRU Example (3 frames)

– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

• access 1 - (1) fault

• access 2 - (1,2) fault

• access 3- (1,2,3) fault

• access 4 - (2,3,4) fault, replacement

• access 1 - (3,4,1) fault, replacement

• access 2 - (4,1,2) fault, replacement

• access 5 - (1,2,5) fault, replacement

• access 1- (2,5,1)

• access 2 - (5,1,2)

• access 3 - (1,2,3) fault, replacement

• access 4 - (2,3,4) fault, replacement

• access 5 - (3,4,5) fault, replacement

– 10 page faults

17CMSC 412 – F11 (lect 12)

LRU Example (4 frames)

– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

• access 1 - (1) fault

• access 2 - (1,2) fault

• access 3- (1,2,3) fault

• access 4 - (1,2,3,4) fault, replacement

• access 1 - (2,3,4,1)

• access 2 - (3,4,1,2)

• access 5 - (4,1,2,5) fault, replacement

• access 1- (4,2,5,1)

• access 2 - (4,5,1,2)

• access 3 - (5,1,2,3) fault, replacement

• access 4 - (1,2,3,4) fault, replacement

• access 5 - (2,3,4,5) fault, replacement

– 8 faults

18CMSC 412 – F11 (lect 12)

FIFO Example (4 frames)

– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

• access 1 - (1) fault

• access 2 - (1,2) fault

• access 3- (1,2,3) fault

• access 4 - (1,2,3,4) fault, replacement

• access 1 - (1,2,3,4)

• access 2 - (1,2,3,4)

• access 5 - (2,3,4,5) fault, replacement

• access 1- (3,4,5,1) fault, replacement

• access 2 - (4,5,1,2) fault, replacement

• access 3 - (5,1,2,3) fault, replacement

• access 4 - (1,2,3,4) fault, replacement

• access 5 - (2,3,4,5) fault, replacement

– 10 Page faults

19CMSC 412 – F11 (lect 12)

Thrashing

� Virtual memory is not “free”
– can allocate so much virtual memory that the system spends

all its time getting pages

– the situation is called thrashing

– need to select one or more processes to swap out

� Swapping
– write all of the memory of a process out to disk

– don’t run the process for a period of time

– part of medium term scheduling

� How do we know when we are thrashing?
– check CPU utilization?

– check paging rate?

– Answer: need to look at both

• low CPU utilization plus high paging rate --> thrashing

20CMSC 412 – F11 (lect 12)

Working Sets and Page Replacement

� Programs usually display reference locality

– temporal locality

• repeated access to the same memory location

– spatial locality

• consecutive memory locations access nearby memory
locations

– memory hierarchy design relies heavily on locality reference

• sequence of nested storage media

� Working set

– set of pages referenced in the last delta references

Small

Very Fast
Large

Very Slow

Working Set Size

21CMSC 412 – F11 (lect 12)

Improving Heap Locality

� Malloc (or new) don’t ensure locality among requests

– Two calls to malloc could get memory on different cache
lines, pages, etc.

� Option 1:

– Malloc a large chunk of memory and parcel it out yourself

� Option 2:

– Add a “near” hint parameter to malloc

– Indicates that memory should be allocated near the target
location

• It’s only a performance hint, and malloc can ignore it

• Allows locality improvement without major changes

22CMSC 412 – F11 (lect 12)

Preventing Thrashing

� Need to ensure that we can keep the working set in

memory

– if the working sets of the processes in memory exceed total
page frames, then we need to swap a process out

� How do we compute the working set?

– can approximate it using a reference bit

23CMSC 412 – F11 (lect 12)

Implementation Issues

� How big should a page be?

– want to trade cost of fault vs. fragmentation

• cost of fault is: trap + seek + latency + transfer

– Does the OS page size have to equal the HW page size?

• no, just needs to be a multiple of it

� How does I/O relate to paging

– if we request I/O for a process, need to lock the page

• if not, the I/O device can overwrite the page

� Can the kernel be paged?

– most of it can be.

– what about the code for the page fault handler?

