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1 This Issues Column!

This issue’s Open Problem Column we revisit three prior columns for which progress was
made on the open problems posed.

2 Request for Open Problems In Memory of Luca Tre-

visan

Luca Trevisan passed away on June 19, 2024 at the age of 52, of cancer. I am putting
together an open problems column of open problems in his honor.

If you are interested in contributing then please email me a document with the following
specifications.

1. It can be as short as half-a-page or as long as 2 pages. One way to make it short is to
give many references or pointers to papers with more information.

2. It should be about an open problem that is either by Luca or inspired by Luca or a
problem you think Luca would care about.

3. In LaTeX. Keep it simple as I will be cutting-and-pasting all of these into one column.

Deadline is Oct 1, 2024.

3 My Usual Request for Columns!

I invite any reader who has knowledge of some area to contact me and arrange to write a
column about open problems in that area. That area can be (1) broad or narrow or anywhere
inbetween, and (2) really important or really unimportant or anywhere inbetween.

1



Revisiting Three Open Problem Columns

William Gasarch

1 The Busy Beaver Function

Scott Aaronson wrote an open problems column on the Busy Beaver Function [1] in 2020.
It is an excellent article that discusses the function, what is known, and why its important.
We summarizes some of it to give context for the progress made; however,

1. For a fuller account of what was known in 2020, see Scott’s article referenced above.

2. For a fuller account of the breakthrough I will discuss, see Scott Aaronson’s blog post on
the result [2], Ben Brubaker’s superb article in Quanta Magazine [6], or bbchallenge’s
own announcement [22].

Def 1.1 BB(n) is the largest number of steps that an n-state Turing machine that halts will
take to halt (BB stands for Busy Beaver). Note that to define BB(n) rigorously you need
to specify the details of the Turing machine model you are using. See he paper of Aaronson
for these details.

It is easy to see that BB(n) is not computable. Indeed, it grows faster than any com-
putable function.

Scott’s open problems column presented the following table of known values of BB(n).

n BB(n) Reference
1 1 Trivial
2 6 Lin & Rado 1963 [12]
3 21 Lin & Rado 1963 [12]
4 107 Brady 1083 [5]
5 ≥ 47, 176, 870 Marxen & Buntrock-1989 [13]
6 ≥ 7.4× 1036,534 Kropitz 2011 [11]

7 ≥ 102×10x , x = 101018,705,353 Wythagoras 2014 (see [14, Section 4.6])

1. Kropitz in 2020 improved the lower bound on BB(6) to TOW(10, 15) which is an
exponential tower of of 15 10’s.

2. Kropitz’s result implies that BB(7) also has that lower bound.

1.1 BB(5) = 47, 176, 870

In July of 2024 it has been announced that BB(5) is indeed 47, 176, 870. We quote Scott
Aaronson’s blog post on the result [2]:
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Today (July 2), an international collaboration called bbchallenge [22] is announc-
ing that it’s determined, and even formally verified using the Coq [23] proof sys-
tem, that BB(5) is equal to 47, 176, 870- the value that’s been conjectured since
1990 when Heiner Marxen and Jurgen Buntrock [13] discovered a 5-state TM
that runs for exactly 47, 176, 870 steps before halting, when started on a blank
tape.

1.2 BB(6) Might Be Hopeless

There are two reasons why BB(6) may never be found.

1.2.1 Too Many Machines to Check

Lets first talk about BB(5). A while back a Busy Beaver hobbyist who goes by the name
of Skelet claimed to have determined the status of all 5-state Turing machines except 43
of them [18]. (This result has not been refereed; however, there were a small number of
5-state TM’s whose status is not known. We will assume that number 43 claimed by Skelet
is correct.)

Hence to find B(5) there were only 43 machines to reason about. The difficulty is proving
that a machine does not halt. The difficulty is not that there are lots of machines. Note
that 43 is a small number.

For B(6) there are far more machines to check. So even with the methods developed
for B(5) to prove that a particular TM does not halt (and note that they cannot always
work), there are too many machines to check. Of course, there might be some unforeseen
breakthrough, but I just don’t see it happening.

1.2.2 Might Need Hard Math

Lets first talk about BB(27). A Busy Beaver hobbyist who goes by the name Code Golf
Addict claims that there is a 27-state TM M such that [3].

M halts iff the Goldbach Conjecture is false.

(This result has not been refereed; however, there are larger values of n such that there is
an n-state TM M with that property. We will assume that the machine claimed by Code
Golf Addict is correct).

Hence to determine BB(27) one must solve Goldbach’s conjecture. Hence BB(27) is
unlikely to be known anytime soon. We note that even if Goldback’s conjecture is solved,
there are other obstacles to finding BB(27).

Is there a hard open problem that is needed to solve BB(6)? There is an open problem
that is needed to solve BB(6) that is related to the Collatz Conjecture and seems hard.

Def 1.2
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1. The Collatz Function is defined as follows:

f(x) =

{
x
2

If x is even

3x + 1 If x is odd
(1)

2. The Collatz Conjecture is that if n ≥ 1 then f(n), f(f(n)), · · · is eventually 1. There
is much empirical evidence for this conjecture; however, it seems hard to prove. Paul
Erdős has said Math is not ready for this problem.

Consider the following problem:

8, f(8), f(f(8)), · · ·

Stop when the number of odd terms is bigger than twice the number of even terms. Scott
Aaronson reports that Tristan Sterin [19] claims that there is a 6-state machine M such that

M halts iff the sequence above that begins f(8) halts.
Hence to determine BB(6) one must solve determine if that sequence halts. This seems

like a hard problem. And again, even if one solved that one problem there are many more
programs to look at which may also involved hard math problems.

2 The BEE Sequence

Bill Gasarch & Emily Kaplitz & Erik Metz [9] studied the following sequence.

Def 2.1 The BEE sequence is as follows:
a1 = 1
(∀n ≥ 2)[an = an−1 + abn/2c].
(BEE stands for Bill-Emily-Erik.)

They proved the following (some of which was already known).

Theorem 2.2

1. Let m ∈ {2, 3, 5, 7}. (∃∞n)[an ≡ 0 (mod m)].

2. Let m ≡ 0 (mod 4). (∀n)[an 6≡ 0 (mod m)].

Based on a lot of empirical evidence they made the following conjecture.

Conjecture 2.3 Let m ∈ N such that m 6≡ 0 (mod 4). Then (∃∞n)[an ≡ 0 (mod m)].

Van Doorn [21] generalized and expanded the questions raised by Gasarch & Kaplitz &
Metz.
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Def 2.4 Let 0 ≤ x ≤ m− 1.

1. Sx,m(n) = |{k : 1 ≤ k ≤ n ∧ ak ≡ x (mod m)}|.

2. dx,m = limn→∞
Sx,m(n)

n
. (dx,m might not exist.)

3. dx,m = lim infn→∞
Sx,m(n)

n
. (dx,m always exists.)

By Theorem 2.2 the following is known.

1. Let r ∈ {2, 3, 5, 7}. Then limn→∞ S0,r(n) =∞.

2. Let r ≡ 0 (mod 4). Then (∀n)[S0,r(n) = 0].

Van Doorn proved the following.

Theorem 2.5

1. For x ∈ {1, 2, 3, 5, 6, 7} then Sx,8(n) ≥ n
6
− 2 log(n)− 11.

2. For x ∈ {1, 2, 3, 5, 6, 7} then dx,8 = 1
6
. (This follows from Part 1.)

3. There is an algorithm that does the following:

• Input: (x,m) ∈ N × N such that either (a) x = 0, or (b) x is divisible by the
largest odd divisor of m and x 6≡ 0 (mod 4).

• Output: A non-zero lower bound on dx,m.

4. Using the algorithm in the last part, the following lower bounds were presented.

(a) d0,3,

(b) d0,5,

(c) d0,6, d3,6,

(d) d0,7,

(e) d0,9,

(f) d0,11,

(g) d0,10, d5,10,

(h) d3,12, d6,12, d9,12,

(i) d0,13,

(j) d0,14, d7,14,

(k) d0,15,
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Van Doorn has emailed me the following:
And in my paper I mentioned that I have actually checked with a computer for all m ≤ 15.

But please encourage your readers to improve upon this! Simply write a better computer
program than what I came up with in order to check more cases and get better lower bounds.

Van Doorn has some speculation and tenuous conjecture. If you are interested then read
his paper.

3 A Sequence from an Oliver Roeder Column

Gasarch wrote an an Open Problems Column [10] about a sequence from Oliver Roeder’s
Riddler Column.

Def 3.1 Let n ∈ N. A sequence is n-linked if

1. Every element in the sequence is in {1, . . . , n}.

2. No element appears more than once in the sequence.

3. Every element is either a factor or multiple of the previous element (except the first
element which has no previous element).

Example: The following is a 100-linked sequence of length 17.
17, 1, 47, 94, 2, 4, 20, 5, 10, 90, 3, 21, 7, 42, 6, 30, 15

Open Problem 3.2 Let k(n) be the length of the longest linked n-sequence. Get upper
and lower bounds on k(n) asymptotically.

The following problem was implicit.

Open Problem 3.3 If is known that k(100) = 77 by a computer program. Find a human-
readable proof of this result and also find more values of k, perhaps by computer.

After the paper appeared I began working on the open problems with David Harris and
his son Tomas. We later found that a lot was known about it. See the blog posts [8] (or just
read the rest of this section) for what was known, and [7] for how we did not know these
results when I wrote the column (Spoiler Alert-Some of the papers were in French but some
of the fault is mine.)

Here is what was already known:

1. In 1983 Pollington [15] proved k(n) ≥ nepolylog(n).

2. In 1983 Pomerance [16] proved K(n) ≤ o(n).
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3. In 1995 Tenenbaum [20] proved (in a paper written in French) that there exists a, b
such that

n

(log n)a
≤ k(n) ≤ n

(log n)b

4. In 2021 Saias [17] showed, in a paper written in French, that

k(n) ≥ (0.3− o(1))
n

log n
.

These results use hard an interesting math which.
Gaetan Berthe emailed me a description of a program that he wrote with Paul Revenant

which finds actual values for k(n). For that description, see the blog post [8]. He also send
me a table [4]. of the first 1000 values of k(n), Gaetan pointed out that these numbers have
not been refereed; however, they are likely correct.
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