# Unusual Integral Domains <br> by William Gasarch 

## 1 Basic Definitions

Def 1.1 Let $D$ be an integral domain and $U$ be its units.

1. $x \in \mathrm{D}-\mathrm{U}$ is irreducible if

$$
x=a b \Rightarrow a \in U o r b \in U .
$$

2. $x \in \mathrm{D}-\mathrm{U}$ is prime if

$$
x|a b \Rightarrow x| a \vee x \mid b .
$$

3. $x$ is composite if $x \notin \cup \cup\{0\}$ and $x$ is not prime.
4. Note: D is the disjoint union of Zero, Units, Primes, and Composites.

## 2 The Domain $\mathrm{Z}[\sqrt{-d}]$ and Norms

Def 2.1 Let $d \in \mathrm{~N}$ be square free. Let $\mathrm{D}=\mathrm{Z}[\sqrt{-d}]$. Then we define the norm on D to be the function $f: \mathrm{D} \rightarrow \mathrm{N}$

$$
f(a+b \sqrt{-d})=(a+b \sqrt{-d})(a-b \sqrt{-d})=a^{2}+b^{2} d
$$

Theorem 2.2 Let $d \in \mathrm{~N}$ be square free. Let $\mathrm{D}=\mathrm{Z}[\sqrt{-d}]$. Let $x, y \in \mathrm{D}$.

1. $f(x y)=f(x) f(y)$.
2. $x$ is a unit iff $f(x)=1$.
3. If $f(x)$ is a prime then $x$ is irreducible.
4. If $x \in \mathrm{D}-\mathrm{U}$ is composite and $N(x)=p q$ where $p, q$ are primes, then $p$ and $q$ are squares mod $d$.
5. If $N(x)=p q$ where $p, q$ are primes, and at least one of $p, q$ is not a squares mod d, then $x$ is irreducible. (This is just the contrapositive of the last item.)
6. If $y$ divides $x$ then $N(y)$ divides $N(x)$.

## Proof:

1) Let $x=a_{1}+b_{1} \sqrt{-d}$ and $y=a_{2}+b_{2} \sqrt{-d}$.

$$
\begin{gathered}
f(x)=a_{1}^{2}+b_{1}^{2} d \\
f(y)=a_{2}^{2}+b_{2}^{2} d \\
\left.f(x) f(y)=\left(a_{1} a_{2}\right)^{2}+\left(\left(a_{1} b_{2}\right)^{2}+\left(a_{2} b_{1}\right)^{2}\right)\right) d+\left(b_{1} b_{2} d\right)^{2} \\
x y=a_{1} a_{2}-b_{1} b_{2} d+\left(a_{1} b_{2}+a_{2} b_{1}\right) \sqrt{-d} \\
f(x y)=\left(a_{1} a_{2}-b_{1} b_{2} d\right)^{2}+\left(a_{1} b_{2}+a_{2} b_{1}\right)^{2} d \\
=\left(a_{1} a_{2}\right)^{2}-2 a_{1} a_{2} b_{1} b_{2} d+\left(b_{1} b_{2} d\right)^{2}+\left(a_{1} b_{2}\right)^{2} d+2 a_{1} a_{2} b_{1} b_{2} d+\left(a_{2} b_{1}\right)^{2} d \\
=\left(a_{1} a_{2}\right)^{2}+\left(b_{1} b_{2} d\right)^{2}+\left(a_{1} b_{2}\right)^{2} d+\left(a_{2} b_{1}\right)^{2} d \\
=\left(a_{1} a_{2}\right)^{2}+\left(\left(a_{1} b_{2}\right)^{2}+\left(a_{2} b_{1}\right)^{2}\right) d+\left(b_{1} b_{2} d\right)^{2}=f(x) f(y) .
\end{gathered}
$$

2) If $x \in \mathbf{U}$ then there exists $y \in U$ such that $x y=1$
$x y=1$
$f(x y)=f(1)=1$
$f(x) f(y)=1$.
Hence $f(x)=f(y)=1$.
3) Assume $x=y z$. Then

$$
f(x)=f(y z)=f(y) f(z)
$$

Since $f(x)$ is prime either $f(y)=1$ or $f(z)=1$. Hence one of $y, z$ is a unit.
4) Let $x=y z$ where $y, z \in \mathrm{D}-\mathrm{U}$.
$f(x)=f(y z)=f(y) f(z)$. But note that $f(x)=p q$ where $p, q$ are primes.
Hence $f(y) f(z)=p q$. Since $y, z \notin \mathbb{U}$ we must have $f(y)=p$ and $f(z)=q$.
Let $y=a_{1}+b_{1} \sqrt{-d}$ and $z=a_{2}+b_{2} \sqrt{-d}$. Hence
$f(y)=a_{1}^{2}+d b_{1}^{2}$ and $f(z)=a_{2}^{2}+d b_{2} 62$ hence
$p=a_{1}^{2}+d b_{1}^{2}$ and $q=a_{2}^{2}+d b_{2} 62$. Take these $\bmod d$ to get
$p \equiv a_{1}^{2} \quad(\bmod d), q \equiv a_{2}^{2} \quad(\bmod d)$.
6) Let $x=y z$. Then $N(x)=N(y) N(z)$. Hence $N(y)$ divides $N(x)$.

## 3 Irreducibles and Primes

## Theorem 3.1

1. Let D be any integral domain. If $x$ is prime in D then $x$ is irreducible in D .
2. There exists integral domains where there are irreducibles that are not prime.

## Proof:

1) Let $x=y z$. Then $x$ divides $y z$. Since $x$ is prime either $x$ divides $y$ or $x$ divides $z$. We assume $x$ divides $y$ (the other case is similar). Hence $y=x w$. Hence
$x=y z=x w z$, so $x w z-x=x(w z-1)=0$. Since D is an integral domain either $x=0$ (which is it not) or $w z-1=0$, so $w z=1$. Hence $z$ is a unit.
2) Let $\mathrm{D}=\mathrm{Z}[\sqrt{-5}]$. Note that the squares $\bmod 5$ are $\mathrm{SQ}_{5}=\{1,4\}$.

We use Theorem 2.2.5 and 2.2.7 to show several elements of $D-U$ are irreducible, and that they do not divide each other.

- 2 is irredubicle: $f(2)=4=2 \times 2$ and $2 \notin \mathrm{SQ}_{5}$.
- 3 is irredubicle: $f(3)=9=3 \times 3$ and $3 \notin \mathrm{SQ}_{5}$.
- $1+\sqrt{-5}$ is irreducible: $f(1+\sqrt{-5})=6=2 \times 3$, but $2,3 \notin \mathrm{SQ}_{5}$.
- $1-\sqrt{-5}$ is irreducible: $f(1+\sqrt{-5})=6$, but $2,3 \notin \mathrm{SQ}_{5}$.
- $2 \nmid 1+\sqrt{-5}: N(2)=4, N(1+\sqrt{-5})=6$, but $4 \nless 6$.
- $1+\sqrt{-5} \times 2: N(1+\sqrt{-5})=6, N(2)=4$, but $6 \times 4$.
- $2 \times 1-\sqrt{-5}: N(2)=4, N(1-\sqrt{-5})=6$, but $4 \times 6$.
- $1-\sqrt{-5} \nmid 2: N(1+\sqrt{-5})=6, N(2)=4$, but $6 \times 4$.
- $3 \times 1+\sqrt{-5}: N(3)=9, N(1+\sqrt{-5})=6$, but $9 \times 6$.
- $1+\sqrt{-5}$ 犭 3: $N(1+\sqrt{-5})=6, N(3)=9$, but $6 \times 9$.
- $3 \times 1+\sqrt{-5}: N(3)=9, N(1+\sqrt{-5})=6$, but $9 \times 6$.
- $1+\sqrt{-5} \not \times 3: N(1-\sqrt{-5})=6, N(3)=9$, but $6 \times 9$.
- $3 \times 1+\sqrt{-5}: N(3)=9, N(1+\sqrt{-5})=6$, but $9 \times 6$.
- $3 \times 1+\sqrt{-5}: N(3)=9, N(1-\sqrt{-5})=6$, but $9 \times 6$.

This is far more than we need. However, we now have the following:

- 2 divides $6=(1+\sqrt{-5})(1-\sqrt{5})$.
- But 2 does not divide $1+\sqrt{-5}$ or $1-\sqrt{5}$ ).
- Hence 2 is not prime.

So 2 is irreducible but not prime. Same for $3,1+\sqrt{5}, 1-\sqrt{5}$.

## 4 What Do We Mean By An Infinite Number of Irreducibes

If we are looking at primes in $\mathbf{Z}$ do we count 7 and -7 as two primes or one? We count them as one prime. The key is that their ratio is a unit.

Convention 4.1 Let $E$ be the following equivalence on irreducibles: $E(x, y)$ iff $x / y \in \mathbf{U}$.

