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Fermat’s Last Theorem Implies
Euclid’s Infinitude of Primes

Christian Elsholtz

Abstract. We show that Fermat’s last theorem and a combinatorial theorem of Schur on
monochromatic solutions of a + b = c implies that there exist infinitely many primes. In par-
ticular, for small exponents such as n = 3 or 4 this gives a new proof of Euclid’s theorem,
as in this case Fermat’s last theorem has a proof that does not use the infinitude of primes.
Similarly, we discuss implications of Roth’s theorem on arithmetic progressions, Hindman’s
theorem, and infinite Ramsey theory toward Euclid’s theorem. As a consequence we see that
Euclid’s theorem is a necessary condition for many interesting (seemingly unrelated) results
in mathematics.

1. INTRODUCTION. Imagine that the set of positive integers has only finitely many
primes. We will investigate consequences, and to become more creative with this, we
imagine we live in an entirely different world, namely in a “world with only finitely
many primes.” If you are a number theorist, then you will realize that a major part
of analytic number theory just vanishes. One of the implications of this article is that
algebraic number theorists and combinatorialists would live in a very different world,
too. The reason is that “Fermat’s last theorem” even in the first interesting case with
exponent 3 would be wrong, that major parts of the modern subject of additive combi-
natorics would disappear, and that even basic results of infinite Ramsey theory would
not exist. If you wonder why this is the case, we invite you to a journey of unexpected
discoveries in the fictional “world with only finitely many primes”!

There are many proofs of Euclid’s theorem stating that there exist infinitely many
primes. There is a very thorough bibliographic collection of 70 pages on a multitude
of proofs of Euclid’s theorem, due to Meštrović [21]. Other collections are given by
Ribenboim [25] and a very recent one by Granville [17]. For some recent proofs, see
[27, 34].

Many of these proofs make use of an infinite sequence with mutually coprime inte-
gers, such as Fn = 22n + 1 (Goldbach, in a letter to Euler 1730), or primitive divisors
of certain recursive sequences (see, e.g., [27]). Furstenberg [14] made use of a suitably
defined topology to prove Euclid’s theorem. A number of proofs have used the expo-
nents of a prime factorization; see, for example, [10, 11, 22]. Even more recently, two
proofs [1, 18] made use of van der Waerden’s theorem applied to the patterns of expo-
nents. Alpoge [1] introduced van der Waerden’s theorem to this subject, and Granville
[18] combined Alpoge’s idea with a theorem of Fermat, namely that there are no four
squares in arithmetic progression.

Inspired by this new type of proof, we investigate which type of purely combina-
torial results can be combined with some kind of arithmetic result to give new proofs
that there exist infinitely many primes. In this way, we link Euclid’s theorem to some
very beautiful and significant results of modern mathematics.
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Here is a brief outline of the article. In Section 2, we link Euclid’s theorem to
Fermat’s last theorem, eventually proved by Wiles [33], and to a theorem of Schur
(1916), which is often considered to be the starting point of combinatorial number
theory. In Section 3, the link is to a theorem of Roth (1953) on the density of integers
without arithmetic progressions. An independent elementary proof of Euclid’s theorem
is a by-product, in Section 4. Section 5 has some discussion about varying the number-
theoretic or combinatorial input. Section 6 uses a theorem of Hindman (1974) on an
infinite extension of Schur’s theorem, and Section 7 gives two proofs using infinite
Ramsey theory.

Roth’s theorem and its extension by Szemerédi [31], and quantitative versions
thereof, (e.g., due to Bourgain [3], Gowers [15], Green and Tao [19]) have inspired
many excellent mathematicians and have had tremendous impact on the relatively
young field of additive combinatorics.

2. FERMAT’S LAST THEOREM IMPLIES EUCLID’S THEOREM. We first
state Schur’s theorem and then the main result of this article.

Lemma 1 (Schur’s theorem [28], 1916). For every positive integer t , there exists an
integer st such that if one colors each integer m ∈ [1, st ] using one of t distinct colors,
then there is a monochromatic solution of a + b = c, where a, b, c ∈ [1, st ].

Theorem 1. For n ≥ 3 let FLT(n) denote the statement “There are no solutions of the
equation xn + yn = zn in positive integers x, y, z.” Then “FLT(n) is true” and Schur’s
theorem imply that there exist infinitely many primes.

Theorem 1 gives a new proof of Euclid’s theorem for those exponents for which
a proof of FLT(n) independent of the infinitude of primes exists. This is certainly the
case for n = 3, 4, 5, where elementary proofs exist (see [9,24]). It then trivially follows
for infinitely many exponents, for example for all multiples of 3. The application of
Fermat’s last theorem with general n to Euclid’s theorem might possibly compete for
the most indirect proof, but at present the proof with general n is not actually a proof
at all, as Wiles’s proof makes use of the fact that there exist infinitely many primes.

We briefly show that Schur’s theorem nowadays can be seen as a direct conse-
quence of Ramsey’s theorem [23] (1929). Ramsey’s theorem (see [4, Theorem 10.3.1])
states that, for any number t of colors (let us call them 1, . . . , t) and positive integers
n1, . . . , nt there exists an integer R(n1, . . . , nt ) such that if the edges of the complete
graph on R(n1, . . . , nt ) vertices are colored, there exists an index i and a monochro-
matic clique of size ni all of whose edges are of color i. In our application we only
need the case n1 = · · · = nt = 3.

Let χ : {1, . . . , N} → {1, . . . , t} be the coloring of the first N = R(3, . . . , 3)

integers. Let us define a coloring of the edges of the complete graph with vertices
{1, 2, . . . , N} as follows: The edge (i, j) is given the color χ(|i − j |). Ramsey’s
theorem guarantees that there is a monochromatic triangle. Let us denote the vertices
of this triangle by (i, j, k), where i < j < k. Let a = j − i, b = k − j , and c = k − i.
Then a, b, c all have the same color and a + b = c holds. This gives the required
monochromatic solution.

Proof of Theorem 1. Suppose there exist only finitely many primes p1, . . . , pk (say).
Every positive integer can be written as m = ∏k

i=1 p
ei

i . We write integers as an
nth power times an nth power-free number. Hence, writing ei = nqi + ri with

0 ≤ ri ≤ n − 1 gives m =
(∏k

i=1 p
qi

i

)n (∏k

i=1 p
ri
i

)
= N(m) × R(m) (say). We use

nk distinct colors, denoted by (t1, . . . , tk), 0 ≤ ti ≤ n − 1, and we color the integer
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m = ∏k

i=1 p
nqi+ri
i by (r1, . . . , rk). By Schur’s theorem there exists a monochromatic

triple (a, b, c) such that c = a + b and with a fixed color (r1, . . . , rk), corresponding
to R = ∏k

i=1 p
ri
i . Here a, b, c all contain the same factor R and we can write a, b, c

as a = N(a)R, b = N(b)R, c = N(c)R, with positive integers N(a), N(b), N(c).
Dividing by R gives N(a) + N(b) = N(c) with nth powers, which is a contradiction
to FLT(n).

It might seem that we require unique factorization, as for an integer with distinct
prime factorizations the coloring is not well-defined. However, for an application of
Schur’s theorem it is perfectly fine if an integer m with hypothetical distinct prime
factorizations is assigned only one of the colors. (Assigning all corresponding colors
to m would be an alternative, but then χ would not actually be a function.)

It is of historic interest to note that Schur’s motivation was to study Fermat’s equa-
tion modulo primes. Dickson had proved that there is no congruence obstruction to the
Fermat equation, and Schur [28] gave a simple proof of this.

3. ROTH’S THEOREM IMPLIES EUCLID’S THEOREM. The Fermat equation
has also been studied with coefficients. The case xn + yn = 2zn in positive integers
has attracted special attention, as a solution in distinct positive integers would mean
that there exist nth powers xn < zn < yn in arithmetic progression. It was conjectured
by Dénes that for n ≥ 3 there exist only trivial solutions with x = y = z. This was
proved by Darmon and Merel [7] based on the methods of Wiles. Sierpiński [30] gives
elementary proofs of the cases n = 4 (Chapter 2, §8) and n = 3 (Chapter 2, §14); see
also [5]. We also give new proofs of Euclid’s theorem in these cases.

The following result gives a matching combinatorial tool.

Lemma 2 (Roth [26]). Let δ > 0 and N ≥ N(δ). Every subset S ⊂ [1, N ] of at least
δN elements contains three distinct elements s1, s2, s3 ∈ S in arithmetic progression,
i.e., s1 + s3 = 2s2.

It should be noted that there is a purely combinatorial proof of Roth’s theorem, e.g.,
in [16, pp. 46–49]. In contrast to van der Waerden’s and Schur’s theorem the above
statement is a so-called “density version”: this result not only guarantees monochro-
matic solutions in some unspecified color, but even in all those colors that occur with
a positive density.

Theorem 2. For n ≥ 3 let DM(n) denote the statement “There are no three positive
nth powers in arithmetic progression” or equivalently “There are no solutions of the
equation xn + yn = 2zn in positive integers x < z < y.” Then “DM(n) is true” and
Roth’s theorem imply that there exist infinitely many primes.

Proof. We first prove the following (possibly surprising) lemma.

Lemma 3. Suppose there exist only finitely many primes p1 < · · · < pk. The set of
nth powers has positive density in the set of all integers, i.e., there exists some δ =
δ(n, k) > 0 such that for all N the set of nth powers in [1, N ] is at least δN .

Proof of lemma. We prove this by dividing a lower bound approximation of the num-
ber of nth powers in [1, N] by an upper bound approximation of all integers in [1, N ],
both counted by means of exponent patterns. The upper bound on the number of
possible exponent patterns (e1, e2, . . . , ek) follows from p

e1
1 · · ·pek

k ≤ N , which gives
ei ≤ log N

log pi
. Hence (1 + log N

log p1
) · · · (1 + log N

log pk
) is an upper bound. For the lower bound

on the number of nth powers, we count those ei divisible by n and with p
ei

i ≤ N1/k
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for all i = 1, . . . , k. We see that at least �1 + log N

nk log p1
	 · · · �1 + log N

nk log pk
	 of all integers

at most N are nth powers, which gives (for large N) a positive proportion of at least
δ ≥ lower bound

upper bound ≥ C

(nk)k
, for some C > 0.

With this lemma we can replace Schur’s theorem by Roth’s theorem. Roth’s
theorem directly guarantees that there exists a nontrivial arithmetic progression of
nth powers, which is in contradiction to DM(n). (Note that in this case there is no
need to divide by the factor R of the first proof.)

Remark. The results by van der Waerden (used by Alpoge and Granville) and Schur
or Roth (used here) are early results of Ramsey theory. The numerical bounds on st

implied by Schur’s theorem are moderate, compared to the very quickly increasing
bounds in van der Waerden’s theorem. Let st denote the least number such that for
any t-coloring, which is a map χ : {1, . . . , st} → {1, . . . , t}, there exist a, b, c with
a + b = c and χ(a) = χ(b) = χ(c). It follows from Schur’s proof that st ≤ �t!e	.

Note added in proof. The author would like to thank Shin-ichiro Seki for drawing
attention to the paper [29]. In fact, in that paper Shin-ichiro Seki shows that Roth’s
theorem, together with DM(3) and a method by Erdős gives Euler’s theorem, namely
that the sum of reciprocals of primes diverges.

4. POSITIVE DENSITY GIVES A NEW ELEMENTARY PROOF. The obser-
vation about “positive density” in Lemma 3 also leads to a short and new proof of
Euclid’s theorem:

Proof. Lemma 3 says the number of nth powers (for any fixed n ≥ 2) has positive
density in the set of positive integers. But it is also clear that there are at most N1/n

positive nth powers xn ≤ N , contradicting the lower bound of δN (for some fixed
δ > 0) for sufficiently large N . Comparing with the bibliography [21], the proof closest
in spirit appears to be Chaitin’s proof [6].

We note that the main focus of this article is not about short proofs but how seem-
ingly remote results can be applied.

5. DISCUSSION ON VARIANTS OF THE PROOFS ABOVE: THE FRANKL–
GRAHAM–RÖDL THEOREM AND FOLKMAN’S THEOREM.

1. We now discuss that knowing something more on the combinatorial side, namely
knowing about the number of monochromatic solutions, helps in reducing the
number-theoretic input considerably.

On the combinatorial side, Frankl, Graham, and Rödl [13] proved that with
t colors the number of monochromatic solutions (a, b, c) of the equation
a + b = c with a, b, c ∈ [1, N] increases quadratically, i.e., there is a posi-
tive constant ct such that the number S(t, N) of solutions is at least ctN

2. (In
fact, [13] gives a direct proof for the Schur equation, but also covers much more
general cases.) As in the proof of Theorem 1, the monochromatic solutions of
a + b = c correspond to solutions of xn + yn = zn in positive integers.

On the number-theoretic side there are several reasons why the number of
solutions is smaller, giving a contradiction to the assumption “there are finitely
many primes only.”

A result of Faltings [12] would give there are at most O(N) solutions of
xn + yn = zn with xn, yn, zn ∈ [1, N], being coprime in pairs. A much more
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elementary approach is as follows: For odd n the left-hand side of xn + yn = zn

can be factored as (x + y)
∑n−1

i=0 (−1)ixn−1−iyi . In particular, when n = 3 this is
x3 + y3 = (x + y)(x2 − xy + y2). The number of divisors of any integer zn ≤ N

is clearly at most
√

N . (Actually, as we assume there are at most k prime factors,
this can be improved to Ck(log N)k.)

Hence the number-theoretic upper bound of at most N values of zn with at
most

√
N factorizations each and the combinatorial lower bound of at least ctN

2

solutions contradict each other.
This remark also applies in the situation of xn + yn = 2zn, as using a result

of Varnavides [32] one can also prove that in this situation there would be at
least ctN

2 many solutions, with x, y, z ≤ N , contradicting as before the number-
theoretic upper bound.

2. For the combinatorial lemma there are other alternatives. For example, a
theorem of Folkman [16, p. 81] guarantees much larger monochromatic struc-
tures than Schur’s theorem does: For every number t of colors, every coloring
χ : N → {1, . . . , t}, and every s ∈ N, there exist Ns,t and a1, . . . , as ∈ [1, Ns,t ]
with the property that all nontrivial subset sums

∑
i∈I ai , where I ⊆ {1, . . . , s}

is nonempty, are monochromatic. In analogy with the proof of Theorem 1, this
would mean, in the special case s = 3, applied with the same coloring and after
dividing by the common factor R, that all of a′

1, a
′
2, a

′
3, a

′
1 + a′

2, a
′
1 + a′

3, a
′
2 +

a′
3, a

′
1 + a′

2 + a′
3 are nth powers. Proving that this is impossible could be easier

than proving FLT(n), as FLT(n) corresponds to s = 2 with fewer conditions.
But we are not aware of any literature on this.

6. HINDMAN’S THEOREM IMPLIES EUCLID’S THEOREM. Let us explic-
itly write down an extreme form of the above remark on Folkman’s theorem. An exten-
sion of Folkman’s theorem is Hindman’s theorem [20]; see also [2] and [16, p. 85].

Lemma 4. For any integer t ≥ 2 and any t-coloring χ : N → {1, . . . , t}, there exists
an infinite sequence A = {a1, a2, . . .} such that all subset sums

∑
i∈I ai over nonempty

finite index sets I ⊂ N are monochromatic.

Theorem 3. Hindman’s theorem implies Euclid’s theorem.

Proof. We start as in the proof of Theorem 1. Suppose there exist only finitely many
primes p1, . . . , pk (say). Every integer can be written as m = ∏k

i=1 p
ei

i , ei = nqi + ri

with 0 ≤ ri ≤ n − 1. That is, m =
(∏k

i=1 p
qi

i

)n (∏k

i=1 p
ri
i

)
= N(m) × R(m) (say).

We color the integer m = ∏k

i=1 p
nqi+ri
i by (r1, . . . , rk). By Hindman’s theorem there

exists an infinite set such that all nonempty finite subset sums are monochromatic with
a fixed color (r1, . . . , rk), corresponding to R = ∏k

i=1 p
ri
i . Dividing by R gives an

infinite set such that all finite subset sums are nth powers.
This would in particular correspond to some fixed xn and infinitely many pairs

(yn
i , z

n
i ) of nth powers such that xn + yn

i = zn
i holds. This is clearly impossible, as

the difference between consecutive nth powers zn − (z − 1)n ≥ zn−1 increases when
n ≥ 2 is fixed and z increases.

Remark. The proof of Hindman’s theorem is not trivial, but it is certainly much more
accessible than FLT(n) for general n. Moreover, the proof of Hindman’s theorem does
not make use of Euclid’s theorem, in contrast to Wiles’s proof of FLT.
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7. INFINITE RAMSEY THEORY IMPLIES EUCLID’S THEOREM. The
above proof does not need the full strength of Hindman’s theorem, as it essentially
only uses sums of two elements. Hence it is possible to reduce the combinatorial input
accordingly, which we discuss below.

Lemma 5 (The infinite Ramsey theorem IRT, see e.g., [8, Theorem 9.1.2]). Let X

be some infinite set and color all subsets of X of size w with t different colors. Then
there exists some infinite subset M ⊂ X such that the subsets of M of size w all have
the same color.

In plain words, the case w = 2 of Lemma 5 says that a finite coloring of the com-
plete graph K∞ guarantees a complete monochromatic K∞ as a subgraph.

Theorem 4. The infinite Ramsey theorem IRT implies Euclid’s theorem.

We leave the proof of Theorem 4 as an exercise to the reader, and only remark it is
a variant of Theorem 3 and our final Theorem 5.

It turns out that one does not actually need an infinite complete monochromatic
graph, but only a monochromatic complete bipartite graph K2,∞, where one set of the
vertices consists of two elements and the other one is infinite (say countable).

We give a complete proof of this and the application to Euclid’s theorem below. To
prove the existence of this infinite substructure is quite simple.

Lemma 6 (The K2,∞ lemma). Let X be some infinite set and color all pairs of two
distinct elements of X with t different colors. Then there exist a set V = {v1, v2} ⊂ X

and an infinite set W = {w1, w2, . . .} ⊂ X\V such that all edges (vi, wj ), with i ∈
{1, 2} and j ∈ N, have the same color.

For ease of notation we assume that X is countable.

Proof. One can construct the required sets step by step.
Choose any set A = {a1, a2, . . . , at+1} ⊂ X of t + 1 distinct elements as ver-

tices. Let v1 = a1. There are infinitely many adjacent edges (v1, xj ). Hence one
of the t colors, say color c1, occurs infinitely often. Let X1 = {x1,j : j ∈ N} ⊂ X

be the set of those elements such that (v1, x1,j ) are these infinitely many edges of
color c1. Now study the color of all (ai, x1,j ) as follows. There exists one color
c2 (say) that occurs infinitely often among the infinitely many edges (a2, x1,j ). Let
X2 = {x2,j : j ∈ N} ⊂ X1 be those elements such that (a2, x2,j ) are of color c2. If
c1 = c2 we have found the required substructure with V = {a1, a2} and W = X2.
We therefore assume that c1 �= c2. We iterate the step above and come to infinite
subsets Xt+1 ⊂ Xt ⊂ · · · ⊂ X3 ⊂ X2 ⊂ X1 ⊂ X such that for fixed i all edges
(ai, xi,j ), j ∈ N, are of color ci (say). As there are t distinct colors only, there must
be two distinct indices i1, i2 ∈ {1, . . . , t + 1} such that ci1 = ci2 . With i1 < i2 without
loss of generality and V = {ai1, ai2}, W = Xi2 and the lemma is proved.

An alternative is to color the elements x ∈ X\A with the vector color (c1, . . . , ct+1)

if the color of the edge (ai, x) is ci , i = 1, . . . , t + 1. As there is only a finite number
of vector colors, namely t t+1, there is an infinite number of x ∈ X\A with the same
vector color, which defines the set W . As before, there are two indices i1 �= i2 such
that ci1 = ci2 . Hence V = {ai1, ai2} and W are the sets required.

Theorem 5. The K2,∞ lemma implies Euclid’s theorem.

Proof. Let n ≥ 2, and assume that p1, . . . , pk is the list of all primes. We color
the integers by the same rule as before: m = ∏k

i=1 p
nqi+ri
i is colored by χ(m) =
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(r1, . . . , rk). Based on this coloring, we define an infinite graph on the positive inte-
gers. The edges (mi, mj ) receive the color χ(mi + mj).

We apply the K2,∞ lemma to this graph: there exists a complete bipartite graph with
parts V = {v1, v2} and an infinite set W such that all edges (vi, wj ), with i ∈ {1, 2}
and j ∈ N, have the same color (r1, . . . , rk).

We multiply all integers in N by the constant P = ∏k

i=1 p
n−ri
i . All pairwise

sums Pvi + Pwj = P(vi + wj) are an nth power zn
i,j (say). Note that zn

2,j − zn
1,j =

P(v2 − v1) is a constant, and is also the distance between infinitely many distinct pairs
of nth powers, for the infinitely many values j . This is impossible, as the gap between
consecutive nth powers increases (see above).

With Hindman’s theorem we made use of a quite advanced combinatorial result, and
the number-theoretic part became correspondingly quite simple. We then reduced the
depth of the combinatorial lemma until we reached the K2,∞ lemma. On the number-
theoretic side, we eventually used the elementary fact that the gaps between consecu-
tive nth powers increase and simple arithmetic such as P(mi + mj) = Pmi + Pmj .

8. CONCLUSION. As our journey through a fictional world comes to an end, let us
briefly reflect: a common theme in all variants discussed is that the existence of only
finitely many primes would guarantee patterns for the set of nth powers that cannot
actually exist, sometimes for deep reasons, sometimes for obvious ones, depending on
the strength of the pattern. Summarizing the results we find:

Corollary 1. In the “world with only finitely many primes” the following hold:

1. If Schur’s theorem holds, then FLT(n) is wrong for all n ≥ 3.
If FLT(n) holds for some n ≥ 3, then Schur’s theorem does not hold.

2. If Roth’s theorem holds, then DM(n) is wrong for all n ≥ 3.
If DM(n) holds for some n ≥ 3, then Roth’s theorem does not hold.

3. The set of nth powers has positive density (giving an immediate contradiction).

4. Hindman’s theorem does not hold.

5. The infinite Ramsey theorem (IRT) does not hold.

6. The K2,∞ lemma does not hold.

In other words, Euclid’s theorem is logically connected with many interesting and
seemingly unrelated results in mathematics.

Having seen all these variants and extensions, the original version, i.e., the combi-
nation of Schur’s theorem and the Fermat–Wiles theorem is the one that looks most
intriguing to this author. And Fermat’s last theorem may be the one that many of us
would miss most in the fictional “world with only finitely many primes”!
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