van der Waerden and the Primes
Author(s): Levent Alpoge
Source: The American Mathematical Monthly, Vol. 122, No. 8 (October 2015), pp. 784-785
Published by: Taylor \& Francis, Ltd. on behalf of the Mathematical Association of America Stable URL: https://www.jstor.org/stable/10.4169/amer.math.monthly.122.8.784

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at https://about.jstor.org/terms

van der Waerden and the Primes

Levent Alpoge

Abstract

In this note we prove the infinitude of the primes via an application of van der Waerden's theorem.

The purpose of this note is to present an amusing consequence of the tension between the additive regularity of the integers and their unique factorization into primes. Namely, it turns out the following theorem of van der Waerden implies the infinitude of the primes.

Theorem 1 (van der Waerden, [1]). Suppose the positive integers are colored with finitely many colors. Then there are arbitrarily many arithmetic progressions containing integers all of the same color.

More formally, let $f: \mathbb{Z}^{+} \rightarrow S$ be any function to a finite set S. Then, for each $k>0$, there are n and d for which

$$
f(n)=f(n+d)=\cdots=f(n+k d) .
$$

What a beautiful theorem! Khinchin [2] called it one of the "pearls of number theory," and we can't help but agree. Now to the amusing consequence.

Theorem 2. There are infinitely many primes.
We will write $v_{p}(n)$ for the largest power of the prime p dividing the positive integer n-hence

$$
n=\prod_{p} p^{v_{p}(n)}
$$

Notice that $v_{p}(a b)=v_{p}(a)+v_{p}(b)$, and

$$
\begin{equation*}
v_{p}(a+b) \geq \min \left(v_{p}(a), v_{p}(b)\right), \tag{1}
\end{equation*}
$$

with equality if $v_{p}(a) \neq v_{p}(b)$.
Proof. Suppose there were finitely many. Color the positive integers by the list of primes dividing them and the parities of their exponents. So, if P is the finite set of primes, define $f: \mathbb{Z}^{+} \rightarrow(\{0,1\} \times\{0,1\})^{P}$ via

$$
f(n)=\left(\left\{\begin{array}{ll}
1 & p \mid n \\
0 & p \nmid n
\end{array}\right\}, v_{p}(n) \bmod 2\right)_{p} \quad \text { if } n=\prod_{p} p^{v_{p}(n)} .
$$

http://dx.doi.org/10.4169/amer.math.monthly.122.8.784
MSC: Primary 11A99

This is a coloring of the integers with a finite set of colors, so it has arbitrarily long monochromatic arithmetic progressions. Let r be larger than the square of any prime, and choose a monochromatic arithmetic progression $a, a+d, \ldots, a+d r$. Suppose p divides a. Since all the integers in the progression have the same prime factors, p divides $a+d$, and hence p divides $d=(a+d)-a$.

Claim. $v_{p}(a)<v_{p}(d)$.
Indeed, if $v_{p}(a)>v_{p}(d)$, observe that

$$
v_{p}(a+p d)=v_{p}(a+d)+1 \not \equiv v_{p}(a+d) \bmod 2
$$

by (1) (here $v_{p}(a+d) \leq v_{p}(a)-2$ since $v_{p}(a+d)=v_{p}(d)<v_{p}(a)$ by (1), and both sides are of the same parity). If $v_{p}(a)=v_{p}(d)$, then

$$
v_{p}(a+k d)=v_{p}(a)+1 \not \equiv v_{p}(a) \quad(\bmod 2)
$$

for k chosen so that $1 \leq k \leq p^{2}$ and $A+k D \equiv p \bmod p^{2}$, where A and D are the prime-to- p parts of a and d, respectively.

Therefore, $v_{p}(a)<v_{p}(d)$ for every prime p dividing a. So we see that a and $a+d$ have all the same prime factors, and $v_{p}(a)=v_{p}(a+d)$ for each of them (again by (1)). This contradicts unique factorization if $d \geq 1$.

REFERENCES

1. B. L. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Arch. Wiskd. 15 (1927) 212-216.
2. Ya. A. Khinchin, Three Pearls of Number Theory. Dover, Mineola, NY, 1998.

9 Tree Hollow Lane, Dix Hills, NY, 11746
alpoge@college.harvard.edu

