N
Check for
Updates

Two-Source Dispersers for Polylogarithmic Entropy and
Improved Ramsey Graphs

Gil Cohen
Weizmann Institute of Science
234 Herz| Street
Rehovot, Israel
coheng@gmail.com

ABSTRACT

In his influential 1947 paper that inaugurated the probabilis-
tic method, Erdds proved the existence of 2logn-Ramsey
graphs on n vertices. Matching Erdds’ result with a construc-
tive proof is considered a central problem in combinatorics,
that has gained a significant attention in the literature. The
state of the art result was obtained in the celebrated paper
by Barak, Rao, Shaltiel, and Wigderson who constructed a

5(loglogn)l—o .
2 -Ramsey graph, for some small universal con-

stant o > 0.

In this work, we significantly improve this result and con-
struct 2U°81°28™)°_Ramsey graphs, for some universal con-
stant ¢. In the language of theoretical computer science,
this resolves the problem of explicitly constructing dispersers
for two n-bit sources with entropy polylog(n). In fact, our
disperser is a zero-error disperser that outputs a constant
fraction of the entropy. Prior to this work, such dispersers
could only support entropy Q(n).

Categories and Subject Descriptors
F.0 [Theory of Computation]: General

General Terms
Theory

Keywords

Ramsey graphs, explicit constructions, zero-error dispersers

1. INTRODUCTION

Ramsey theory is a branch of combinatorics that studies
the unavoidable presence of local structure in globally un-
structured objects. In the paper that pioneered this field of
study, Ramsey [Ram28] considered an instantiation of this
phenomena in graph theory.

Definition 1. A graph on n vertices is called k-Ramsey if
it contains no clique or independent set of size k.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

STOC’16, June 19-21, 2016, Cambridge, MA, USA

(© 2016 ACM. 978-1-4503-4132-5/16/06...$15.00
http://dx.doi.org/10.1145/2897518.2897530

278

Ramsey showed that there does not exist a graph on n
vertices that is log(n)/2-Ramsey. In his influential paper that
inaugurated the probabilistic method, Erdés [Erd47] comple-
mented Ramsey’s result and showed that most graphs on n
vertices are 2logn-Ramsey. Unfortunately, Erdés’ argument
is non-constructive and one does not obtain from Erdds’ proof
an example of a graph that is 2logn-Ramsey. Erdés offered
a $100 prize for matching his result, up to any multiplicative
constant factor, by a constructive proof. That is, coming up
with an explicit construction of an O(logn)-Ramsey graph.
Erdés’ challenge gained a significant attention in the liter-
ature [Abb72, Nag75, Fra77, Chu81, FW81, Nao092, Alo9s,
Gro01, PR04, Bar06, BKS*10, BRSW12]. Other works stud-
ied the difficulty of constructing Ramsey graphs [Gopl4]
and suggested routes towards constructing improved Ramsey
graphs [GKRTS05].

The notion of explicitness was formalized in the compu-
tational era. While, classically, a succinct mathematical
formula was widely considered to be an explicit description,
complexity theory suggests a more relaxed, and arguably
more natural interpretation of explicitness. An object is
deemed explicit if one can efficiently construct that object
from scratch. More specifically, a graph on n vertices is
explicit if given the labels of any two vertices u, v, one can
efficiently determine whether there is an edge connecting
u,v in the graph. Since the description length of u,v is
2logn bits, quantitatively, by efficient we require that the
running-time is polylog(n).

Ramsey graphs have an analogous definition for bipartite
graphs. A bipartite graph on two sets of n vertices is bipar-
tite k-Ramsey if it has no k X k complete or empty bipartite
subgraph. One can show that a bipartite Ramsey graph
induces a Ramsey graph with comparable parameters. Thus,
constructing bipartite Ramsey-graphs is at least as hard as
constructing Ramsey graphs, and it was believed to be a
strictly harder problem. Nevertheless, the best known con-
struction of Ramsey graphs is in fact bipartite. Furthermore,
Erdds’ argument holds as is for bipartite graphs.

In their celebrated paper, Barak et al. [BRSW12] gave

an explicit construction of a bipartite k(n)-Ramsey graph on

. . (loglog n)l == .
n vertices with k(n) = 22 , where a > 0 is some

small universal constant. In particular, k(n) = 2°0°8™ js
sub-exponential in the desired value, namely, in 2logn. In
this paper we give an explicit construction of a bipartite
k(n)-Ramsey graph with k(n) that is pseudo-polynomial in
the desired value. *

LA function f: N — N is pseudo-polynomial if there exist

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2897518.2897530&domain=pdf&date_stamp=2016-06-19

THEOREM 1. There ezists an explicit bipartite 2(1°81°8 A

Ramsey graph on n vertices, where c is some universal con-
stant.

1.1 Two-Source Zero-Error Dispersers

In the language of theoretical computer science, Theorem 1
translates to a disperser for two independent n-bit sources
with entropy O(log®mn). We first recall some basic definitions.

Definition 2. The min-entropy of a random variable X is
defined by Hoo(X) = mingegup(x) —log, (Pr[X =z]). If X
is supported on {0, 1}", we define the min-entropy rate of X
by Hoo(X)/n. In such case, if X has min-entropy k or more,
we say that X is an (n, k)-source.

Definition 8. A function Disp: {0,1}" x{0,1}" — {0,1}™
is called a two-source zero-error disperser for entropy k if
for any two independent (n,k)-sources X, Y, it holds that
sup(Disp(X, Y)) = {0, 1}™.

Note that a two-source zero-error disperser for entropy
k, with a single output bit, is equivalent to a bipartite 2*-
Ramsey graph on 2" vertices on each side. Constructing two-
source dispersers for polylogarithmic entropy is considered
a central problem in pseudorandomness, that we resolve
in this paper. Indeed, a 2P°V{°glogm)_Ramsey graph on n
vertices is equivalent to a disperser for entropy polylog(n).
From the point of view of dispersers, it is easier to see how
challenging is Erdds’ goal of constructing O(log n)-Ramsey
graphs. Indeed, these are equivalent to dispersers for entropy
log(n) + O(1). Even a disperser for entropy O(logn) does
not meet Erdds’ goal as it translates to a polylog(n)-Ramsey
graph.

While Theorem 1 already yields a two-source zero-error
disperser for polylogarithmic entropy, it is desired to con-
struct dispersers with many output bits. Our construction
has this property.

THEOREM 2. There exists an explicit two-source zero-error
disperser for n-bit sources having entropy k = polylog(n),
with m = Q(k) output bits.

Theorem 2 gives an explicit zero-error disperser for polylog-
arithmic entropy with many output bits. Prior to this work,
the state of the art zero-error disperser with a super constant
number of output bits, due to Gabizon and Shaltiel [GS08],
required entropy k = Q(n). In fact, partially motivated by
applications to data structures [FN93], in [GS08] a stronger
variant of a two-source zero-error disperser was constructed,
in which every element in the range is obtained with proba-
bility at least § = §(n). Our construction has this property
as well.

1.2 TImplicit O(1) Probe Search

In this section we describe an application of our construc-
tion to data structures. In the probe search problem one
wants to store a set S C {0, 1}™ of size |S| = 2" in an ordered
table T of the same size, where every entry in T contains
exactly one element of S. We say that T" supports ¢ queries
if given « € {0,1}" one can determine whether € S by
probing ¢ entries of T'. Note that the only freedom one has
when designing 7' is the order in which the elements of S are
placed.

constants ¢, mo such that f(m) < 20°¢™)° for all m > my.

279

Regardless of the value of n, one can always store S in
a table T" according to a predetermined order of {0,1}" so
to support ¢ = k queries. Following Yao [Yao81] and Fiat
and Naor [FN93], the regime of parameters we consider only
allows for constant ¢, independent of n, k. In [Yao81, FN93]
it was shown that for supporting constant ¢, kK must be a
fast enough growing function of n. On the positive side, Fiat
and Naor [FN93] showed how to construct tables supporting
constant g for kK = dn, for any constant 6 > 0. This result
was later improved by Gabizon and Shaltiel [GS08] to k = n®
for any constant 6 > 0, while maintaining constant query
complexity.

Fiat and Naor [FN93] reduced the probe search problem to
the design of a combinatorial object they called a “rainbow”.
This object can be constructed given a certain kind of dis-
persers. In particular, the output length of the disperser must
be large. Although we do not delve to the details in this pro-
ceeding version, we remark that our dispersers are sufficient
for this reduction to go through, and by building on [FN93,
GS08] we improve previous results to k = polylog(n) while
maintaining constant query complexity.

We remark that, by inspection, one can show that this
improvement also follows by using a recent construction of
multi-source extractors [Lil5b]. Though, as these extractors
require more than two sources, the obtained query complexity
is slightly larger.

1.3 Subsequent Work

In an exciting subsequent work, Chattopadhyay and Zuck-
erman [CZ15] gave a construction of a two-source extractor
for polylog(n)-entropy based on a very different set of ideas
than ours. The error of their extractor is n~%®") and the
number of output bits is 1. The latter was improved soon af-
ter by Li [Lil5a] using similar techniques, with the same error
parameter. As extractors with one output bit yields Ramsey
graphs, the work of [CZ15] gives a second, very different,
construction of Ramsey graphs matching our parameters.

2. OVERVIEW OF THE CONSTRUCTION
AND ANALYSIS

In this section we present our disperser and give a fairly
comprehensive overview of the proof, though we allow our-
selves to be somewhat imprecise whenever this makes the
exposition clearer. The formal proof can be found in the full
version of this paper. We start by recalling the definition of a
subsource. For ease of presentation we consider a somewhat
relaxed definition. From this point on an (n, k)-source will
refer to a random variable X that is uniformly distributed
over some subset Sx C {0, 1}™ with size at least 2*. A lemma
by Chor and Goldreich [CG88] implies that, essentially, this
assumption can be made without loss of generality. We say
that a source X’ is a subsource of X, and write X’ C X, if
Sx/ C Sx. Further, the deficiency of X’ in X is defined by
log(|9x//[9x])-

Another notion we need is that of a block-source. For an
even integer n, given an n-bit string xz, we denote by left(x)
and by right(x) the n/2-bit prefix and n/2-bit suffix of z,
respectively. A random variable X is called a k-block-source
if left(X) has min-entropy k. Furthermore, conditioned on
any fixing of left(X) it holds that right(X) has min-entropy k.
Following a long line of research, Li [Lil5b] gave an explicit
construction of an extractor for a block-source and a source

with polylogarithmic entropy. More precisely, Li designed
an efficiently computable function BExt: {0,1}" x {0,1}" —
{0,1}™ with the following property. For any k-block-source
X and an independent (n, k)-source Y, with k& > log'?n,

BExt(X,Y) ~. Uy, where m = 0.9k and € = 9=k

2.1 Entropy-Trees and Tree-Structured Sources

For the purpose of constructing a disperser it suffices to
construct a disperser for subsources of the original sources.
In this section we show that any source has a low-deficiency
subsource that has a “nice” structure. Thus, it suffices to
construct our disperser only for these nice sources.

Entropy-trees

An entropy-tree is a complete rooted binary tree T', where
some of its nodes are labeled by one of the following labels:
H, B, F, which stand for high entropy, block-source, and fixed,
respectively. The nodes of an entropy-tree are labeled ac-
cording to rules that capture any possible entropy structure
of a source. The rules are:

H
F/ \H
F/ \H
—
AN
F B

Figure 1: An example of an entropy-tree. Unlabeled
nodes and edges to them are omitted.

e The root of T, denoted by root(T"), is labeled by either
H or B.

e There is exactly one node in 7', denoted by vg(T'), that
is labeled by B.

e If v is a non-leaf that has no label, or otherwise labeled
by F or B, then its sons have no label.

e If v is a non-leaf that is labeled by H then the sons of
v can only be labeled according to the following rules:

— If leftSon(v) is labeled by F then rightSon(v) is
labeled by either H or B.

— If leftSon(v) is labeled by H or B then rightSon(v)
has no label.

With every entropy-tree 1', we associate a path that we
call the entropy-path of T. This is the unique path from
root(T) to vs(T). We say that a path in T contains the
entropy-path if it starts at root(T") and goes through vg(T).
Note that we allow an entropy-tree to have nodes that are
descendants of vg(T"). We just do not allow these nodes to
have labels.

Tree-structured sources

Now that we have defined entropy-trees, we can say what
does it mean for a source to have a T-structure, for some
entropy-tree 1. To this end we need to introduce some
notations. Let n be an integer that is a power of 2. With
a string € {0,1}", we associate a depth logn complete

280

rooted binary tree, where with each node v of T' we associate
a substring z, of = in the following natural way: Tieot(r) = ;
and for v # root(T), if v is the left son of its parent, then
Ty = left(Tparent(v)); Otherwise, z, = right(Zparent(v))-

Let T be a depth logn entropy-tree. An n-bit source X is
said to have a T-structure with parameter k if for any node
v in T the following holds. If v is labeled by F then X, is
fixed; If v is labeled by H then Hoo(Xy) > k; Otherwise, if v
is labeled by B then X, is a vk-block-source. One can prove
that any (n, k)-source X, with k = Q(log? n), has a deficiency
2logn subsource that has a tree-structure with parameter
Q(k). Thus, for the purpose of constructing dispersers, we
may assume that we are given two independent samples from
tree-structured sources rather than from general sources.

The challenge-response mechanism

The challenge-response mechanism was introduced in [BKS™ 10]
and was further developed by [BRSW12]. Roughly speaking,
this is a mechanism that allows one to distinguish between
the case that a random variable is fixed from the case that
it has a sufficient amount of entropy. We now present the
mechanism.

For integers ¢ < n, the challenge-response mechanism is a
poly(n)-time computable function Resp: {0,1}" x {0,1}" x
{0,1}* — {fixed, hasEntropy} with the following property.
For any two independent (n, polylog(n))-sources X,Y’, and
for any function Ch: {0,1}" x{0,1}™ — {0, 1}, the following
holds:

e If Ch(X,Y) is fixed to a constant then there exist
deficiency ¢ subsources X' C X, Y’ C Y, such that
Pr(, ,~(x’,v) [Resp(z,y, Ch(z,y)) = fixed] = 1.

e If for any deficiency ¢ subsources X c X, Y CVYit
holds that Hoo(Ch(X,Y)) > k, then

Pr Resp(z, y, Ch(z, = hasEntropy] > 1—-27*.
o EEy y, [Resp(@,y, Ch(z, 9)) Pyl =

2.2 Identifying the Entropy-Path

Tree-structured sources certainly seem nicer to work with
than general sources. However, it is still not clear what
good is this structure for if we do not have any information
regarding the entropy-tree, and in particular regarding the
entropy-path. Remarkably, Barak et al. [BRSW12]| were
able to identify the entropy-path of the entropy-tree T' given
just one sample from x ~ X, where X is a T-structured
source, and one sample from y ~ Y, where Y is a general
source that is independent of X. We now turn to describe the
algorithm used by [BRSW12]. Before doing so, we remark
that Barak et al. proved something somewhat different.
Indeed, they considered a variant of entropy-trees and had
to prove something somewhat different than what we need.
In particular, their algorithm did not identify the entropy-
path per se. Nevertheless, their proof can be adapted in a
straightforward manner to obtain the result we need.

What does it mean to identify the entropy-path?

What do we mean by saying that an algorithm identifies the
entropy-path of an entropy-tree T'7 This is an algorithm
that on input z,y € {0,1}", outputs a depth logn rooted
complete binary tree and a marked root-to-leaf path on
that tree, denoted by pobs(z,y) — the observed entropy-path.
Ideally, the guarantee of the algorithm would have been

the following: If x is sampled from a T-structured source
X and y is sampled independently from a source Y, then
Dobs(Z,y) contains the entropy-path of 7' with probability 1
over (z,y) ~ (X,Y). That is, for any (z,y) € sup((X,Y)), if
we draw the computed path pops(z,y) on the entropy-tree T'
then this path starts at root(7") and goes through vg(T).

Note that the path pops(z,y) is allowed to continue arbi-
trarily after visiting vg(7"). Asking that pops(z,y) will stop
exactly at vg(T) is a very strong requirement. In particular,
it will conclude the construction of the disperser. Indeed,
once the block-source X, () is found, one can simply output
BEXt()(vB(T)7 Y)

This was an ideal version of what we mean by identifying
an entropy-path. For our needs, we will be satisfied with a
weaker guarantee. Following [BRSW12], we will show that
there exist low-deficiency subsources X’ € X, Y’ C Y, such
that with high probability over (z,y) ~ (X’,Y”) it holds that
Dobs(Z,y) contains the entropy-path of T'.

The fact that we only have a guarantee on low-deficiency
subsources is good enough for us as we are aiming for a
disperser. The fact that there is an error (that did not
appear in the analysis of [BRSW12]) should be handled with
some care. Indeed, note that by moving to a deficiency d
subsource, an ¢ error in the original source can grow to at
most 2¢- ¢ restricted to the subsource. We will make sure that
the error is negligible compared to the deficiency we consider
in the rest of the analysis. Thus, from here on we will forget
about the error introduced in this step of identifying the
entropy-path.

The algorithm of [BRSW12] for identifying the entropy-
path

We now describe the algorithm used by [BRSW12] for iden-
tifying the entropy-path of an entropy-tree 1. Note that if
root(7T") = vg(T") then any observed entropy-path will contain
vg(T). So, we may assume that this is not the case. Let
v be the parent of vg(T") in 7. As a first step, we want to
determine which of the two sons of v is vg(T"). To this end,
node v declares that its left son is vg(7) if and only if

(1)

Lets pause for a moment to introduce some notations. If
Equation (1) holds, we say that node v (z,y)-favors its
left-son; otherwise, we say that v (z,y)-favors its right son.
Moreover, we define the good son of v to be vg(T"). More
generally, for a node u # vg(T) that is an ancestor of vg(T),
we define the good son of u to be its unique son that is an
ancestor of vg(T"). Note that by following the good sons from
root(7T") to vg(T") one recovers the entropy-path of 7. Thus,
one correctly identifies the entropy-path of T on input z,y if
and only if any ancestor of vg(7") on the entropy-path of T’
(z,y)-favors its good son.

One can show that if Xiegson(v) is fixed then Equation (1)
holds with probability 0 on some low-deficiency subsources
of X,Y. Further, by the challenge-response mechanism,
one can show that if leftSon(v) = vg(T) then with high
probability over (X,Y), Equation (1) holds. Observe that
by the definition of an entropy-tree, these are the only two
possible cases.

We showed how vg(T") can convince its parent v that it is
its good son. The trick was to use the block-source-ness of
Xog(T) SO to generate a proper challenge. Considering one
step further, we ask the following: If u is the parent of v,

Resp (xv, y, BExt (3:'|eftson(v), y)) = hasEntropy.

281

how can v convince u that it is its good son? After all, v
is not a block-source. The elegant solution of Barak et al.
is as follows. Given z,y € {0,1}", the challenge of v will
contain not only BExt(z.,y) but also BExt(zw,y), where w
is v’s (z,y)-favored son. Thus, if v’s favored son happens
to be its good son vg(T'), the challenge posed by v will not
be responded by u. More generally, a node v decides which
of its two sons it (z,y)-favors not according to Equation (1)
but rather according to whether or not

(2)

where GSC(Zieftson(v),¥) is a matrix with at most logn rows
(as the depth of the tree) that contains BExt(%iefison(v), ¥) as
a row, as well as BExt(zw,y), where w is the (z,y)-favored
son of leftSon(v), and also BExt(z,,y), where r is the (z,y)-
favored son of w, etc.

2.3 The Strategy For The Rest of Our Con-
struction

To carry the analysis of our disperser, we require even
more structure from our sources than the structure required
by [BRSW12]. First, we require both X and Y to have a
tree-structure. In previous works [BKS*10, BRSW12], the
second source Y was used mainly to “locate the entropy” of
the source X, and the only assumption on Y was that it has
a sufficient amount of entropy for this purpose. We, however,
will make use of the structure of Y as well.

Resp (v, Y, GSC (Zieftson(v); ¥)) = hasEntropy,

root(T)

Figure 2: The “triple block-source” structure of an
entropy-tree.

Second, we need both X and Y to have a “triple block-
source” structure. That is, we assume that X has a T'x-
structure with a node wvop(Tx) corresponding to the block-
source Xy, (Ty)- We then assume that left(X,,, (ry)) has
its own tree-structure with a node vmiq(Tx) corresponding to
a second block-source X, . (ry) lying inside left(X,,,,(ry))-
Finally, we require that left(X, ., (r,)) has its own tree-
structure with a node vpot(T'x) that corresponds to a third
block-source X, (7y) that lies inside left(X,, ,(ry)). The
same goes for Y. Namely, Y also has a triple block-source
structure. In particular, the entropy-tree of Y, denoted by
Ty, has nodes that we denote by utop(Ty), umia(Ty), and
Ubot (Ty'), analogous to viep(T'x), Umid(Tx), and vpet(Tx) in
Tx . We allow ourselves to change the definition of an entropy-
tree given in the previous section so that it will capture this
“triple block-source” structure, but the reader should not
worry about these details at this point.

Given this structure of the sources, we are ready to give a
high-level overview of our construction. In the subsequent
sections of the overview (Section 2.4 and Section 2.5), we give

further details. Let X be a T'x-structured source and let Y
be a Ty -structured source, for some entropy-trees T'x, Ty . At
the first step, the disperser identifies the entropy-path of Tx
and the entropy-path of Ty using the algorithm of [BRSW12].
More precisely, given the samples x ~ X ,y ~ Y, we compute
two paths denoted by pobs(, ¥) = vo(Z,¥), - - -, Viog(n)—1(Z, Y),
Qobs (%, y) = uo(x,y), u1(T,y), - - -, Uiog(n)—1(x, y). This step
must be done with some care. From technical reasons (re-
lated to the way the error term behaves when moving to
subsources), we cannot use x,y to first find the entropy-path
of Tx and then to find the entropy-path of Ty. Thus, in
some sense, the two paths must be computed simultaneously.

At this point, ignoring some small error term, we have that
there exist low-deficiency subsources X’ C X, Y’ C Y, such
that for any (z,y) € sup((X’,Y")) it holds that pows(z,y)
(resp. qobs(z,y)) contains the entropy-path of Tx (resp. Ty).
In particular, we have that Ugepth(v, (1x)) (X', Y”) is fixed to
Vtop(T'x), and the same holds for vmida(T'x), vbot (IT'x), as well as
for utop(Ty), umid(Ty), and upet(Ty). To keep the notations
clean, we write X,Y for X’,Y’ in this proof overview.

At the second step of the algorithm, we identify vmia(T'x)
with high probability over subsources X’ C X, Y’ C Y. This
sounds fantastic — having found vmia(Tx), we can simply
output BExt(X, s ,Y") which is close to uniform. Un-
fortunately, however, the only way we know how to find
vmid(T'’x) requires us to fix Ieft(X;mid(TX)). That is, once
found, X"l)mid(TX) is no longer a block-source. We elaborate
on how to find vmi¢(Tx) in Section 2.4. Then in Section 2.5,
we show how to determine the output even after loosing the
block-structure of X, . (ry)-

2.4 Finding v.4(Tx)

Given z,y € {0,1}", the key idea we use for identifying
Umid (T'x) on pobs(z,y) lies in the design of a challenge that
we call the node-path challenge.

The node-path challenge and v2%(x, y)

Gobserved (X, y)

Pobservea(%,¥)

Vtop (Ty)

Vmia(Tx)

Vpot (Tx)
’ BEXt(Yuy (e Xvy9))

Figure 3: The node-path challenge.

Let v be a node in Tx, and let ¢ = wo, ..., Wiogn)—1 be a
root-to-leaf path in Ty. We define the challenge NPC(z,, yq)
to be the log(n)-rows Boolean matrix such that for i =
0,1,...,log(n)—1, NPC(zv, yq)i = BExt (Yw,, Tv) . We define
0% (2,) to be the node v on Pobs(, y) with the largest depth

mid

282

such that

®3)
Informally speaking, based on the node-path challenge, a
node on pobs(x, y) uses the path gobs(z,y) so to prove that it
is Umid (Tx)

Ideally, we would want to prove that v225(z,y) = vmid(Tx)
for any (z,y) € sup((X,Y)). By now we know that this is
too much to ask for, and in any case, it suffices to prove that
there exist low-deficiency subsources X’ C X, Y’ C Y such
that with high probability over (x,y) ~ (X’,Y”) it holds that
V3 (%, y) = vmia(Tx). Unfortunately, we will not be able to
prove that either. What we will be able to show is that there
exist strings «, 8 such that the following holds. Define X, =
X | (XleftSon(vmid(TX)) = Oé), Yﬁ =Y | (KeftSon(umid(Ty)) = ﬁ)’
and let imig(Tx) denote the depth of vmia(Tx).

The way we choose «, 8 is with respect to the error that we
constantly ignore throughout this overview. Thus, assume
that «, 8 are chosen in such a way that allows us to con-
tinue ignoring the error (this is done by a simple averaging
argument). No further requirement is posed on «a, 3.

Resp (x, y, NPC (acv, yqobs(z,y))) = hasEntropy.

Proposition 1. There exist low-deficiency subsources Xq,z3 C
Xa, Ya,3 C Yp, such that with high probability over (z,y) ~
(Xa.8, Ya,3), it holds that

Vi > imid(Tx) Resp (x, y, NPC (xvi@,y), yqobs(z,y))) = fixed,

Resp (:ay, NPC (I”im;d(Tx)(x’y)’y%bs(”"y))) = hasEntropy.

Note that by the way we defined v2%(z,), Proposition 1
yields that v (x,) = vmia(Tx) with high probability over
(z,y) ~ (Xa,8, Ya,s). In particular, this gives us an algorithm
for computing vmid(Tx) — simply go up the computed path
Pobs (2, y) until a node v is found for which Equation (3) holds.
In the rest of this section we prove Proposition 1.

Proposition 1 has two parts. First, it states that the node-
path challenges associated with nodes below v;_, (1,)(z,y) on
the path pobs(x,y) are responded with high probability over
x,y that are sampled from some low-deficiency subsources
of X4,Ys. Second, the node-path challenge associated with
Vi (Tx) (@, y) is left unresponded with high probability over
the samples.

Recall that, ignoring a small error term, we assume that
Vs ia (1) (T, Y) = vmid(T'x). Lets first consider the nodes
below vmid(T'x) on pobs(z,y). Naturally, we want to use the
challenge-response mechanism. For that we must find low-
deficiency subsources X, C Xa, Y3 C Y3 such that for all
© > imid(T'x), the challenge

NPC ((X&)vi(xg,yé), (Yé)%m(x&,yﬁ;))
is fixed. To this end we show that
NPC ((X0)u, v+ (Vo))

is a deterministic function of Yg. Indeed, in such case and
since the challenge consists of a relatively small number
of bits, we can find a low-deficiency subsource Yz C Yj
such that the random variable in Equation (4) is fixed to a
constant. For i > imid(Tx), our starting point is the random

(4)

variable NPC ((Xa)vm(xmyﬁ), (YB)qobs(X(xvYﬁ)) . To make this

variable depend solely on Yjg, by moving to a subsource of
Xo, we must consider the 3 appearances of X,. We start
with qobs(Xa, Yg).

Claim 1. There exists a deficiency logn subsource X/, C
X, such that gobs(X},Ys) is fixed.

PROOF. Let ibot(Ty) denote the depth of upet(7y). Recall
that the path gobs(Xa,Ys) contains the entropy-path of Ty .
In particular, the nodes uo(Xa, Y3), . .., w1y) (Xa, Yp) are
fixed. It is left to argue that there is a low-deficiency sub-
source X,, C X, such that all of the remaining nodes, namely,
Ui (Ty)41 (Xa YB), - -, Uiog(n)—1 (X4, Yp) are fixed as well.

Let us first consider the random node u;, 1y)+1(Xa, Y5)
that is the son of the fixed node w;,, (7 y(Xa, Ys) = tbot(Ty).
According to Equation (2), the node upot(Ty) decides which
of its two sons its favor, namely, which of its sons will be on
Gobs (X, Y3), according to whether or not

ReSP ((Y5) uper(1y)> Xais GSC (Y5 teftSon(upe (T3 1) » X))
= hasEntropy.

(5)
By definition, ubet(Ty) is a descendant of leftSon(umid(Ty)).
Further, (Y3)ieftson(uq(Ty)) 18 fixed. Thus, also (Y3)u,,.(1y)
and (Y3)iefeson(upy (Ty)) are fixed to some constants. Therefore,
the Boolean expression in Equation (5) is a deterministic
function of X,. One can show that there exists a deficiency
1 subsource X’ of X, such that the Boolean expression in
Equation (5) is fixed. In particular, w;, 1y)+1(X’, Yp) is
fixed to a constant.

At this point we can apply the same argument to ipot (Ty) +
2. Indeed, u;,,(1y)+1(X’, Y3) is fixed to a constant and all
appearances of Y3 in the Boolean expression that is analogous
to Equation (5) are again fixed to constants for the same
reason as before. Since this process terminates after at most
log n steps and since in each iteration we move to a deficiency
1 subsource of the previous obtained subsource, the claim
follows. [

We turn to show that for all ¢ > mia(Tx),

NPC (()vq(X ,Yg)s (YB)%bs(Xwaﬁ))

is a deterministic function of Y3. By the discussion above,
this will prove the first part of Proposition 1. By Claim 1, we
already know that gobs(X 5, Y3) is fixed to a constant. Thus, it
suffices to show that (X,)m(X/ v5) isa deterministic function
of Y3 for all i > imia(Tx). By an argument similar to the
one used in the proof of Claim 1, one can show that for any
such i, v;(X},Y3s) is a deterministic function of Ys. Note
further that, by the definition of an entropy-tree, since i >
imid(T'x), we have that v; (X}, Yp) is always (that is, for every
(z,y) € sup((X4,Ys))) a descendant of leftSon(vmia(Tx)).
Since (X},)|eft$0n(vmld(TX)) is fixed to a constant we conclude
that (X4)v,(x7,.v,) is indeed a deterministic function of V3.
By the discussion above, we are now in a position to
obtain a low-deficiency subsource Y3 C Yj such that the ran-

dom variable NPC (()vl(X/ 1A (Yﬂ)qobs<X/ v/)) is fixed

to a constant. We can then apply the challenge-response
mechanism and conclude that there exist low-deficiency sub-
sources Xo,3 C X4, Ya,3 C Yy such that for any (z,y) €
sup((Xa,8, Ya,8)), it holds that

Vi > imid(Tx) Resp (a:, y, NPC (xvi(z,y)quobs(z,y))) = fixed.
The challenge of vmia(Tx) is left unresponded

To prove Proposition 1, it suffices to show that w.h.p over
(z,y) ~ (Xa.8, Ya,s), it holds that

Resp (m, y, NPC (:cvmid(TX), yqobs(w,y))) =hasEntropy.

283

As usop (Ty) is on the path gobs(x,y) V(z,y) € sup(Xa,8, Ya,8),

the matrix NPC ((Xaﬁ)vmid(Tx)v (Yaﬁ)qobs(xmw con-

tains the row

BExt ((Yavﬁ)utop(TY)’ (Xa75)vmid(TX)> : (6)

Since X,,_,,(ry) is a block-source, (Xa),, (1) has a signif-
icant amount of entropy. Indeed, X, is obtained from X
by fixing Xiefison(vpg(Ty)) = left(Xy . (1x)). As Xap is a
low-deficiency subsource of Xa, (Xa,8)uv,,(Tx) also has a
significant amount of entropy.

We now observe that (Ya,s)u.,(1y) is @ block-source. In-
deed, Yy, (1y) is a block-source and Y is obtained from Y’
by fixing Yiettson(upmq(Ty))- Since Yy, . (1y) is a block-source,
this fixing leaves some entropy in (Y3)u, ,(1y)- Recall further
that (Y)u,(1y) lies inside left((Ys)u,(1y)) as umia(Ty) is
a descendant of leftSon(uwp(Ty)). Thus, (Ya,8)uw(Ty) 18 @
block-source. A

Consider now any low-deficiency subsources X C X, g,
Y C Ya,3. One can show that X’Umid(TX> has a signifi-

cant amount of entropy and that Y, (r,) is a block-source
(with some deterioration in parameters). Thus, for any low-
deficiency subsources X , Y of Xa,8, Ya,s, respectively, we
have that the challenge matrix associated with vmia(Tx) con-
tains a row that is close to uniform. In particular this matrix
is close to having high entropy. Thus, by the challenge-
response mechanism, we have that the node-path challenge
associated with vmia(Tx) is left unresponded with high prob-
ability over (z,y) ~ (Xa,8, Ya,8), as desired.

Ya,s)

2.5 Determining The Output
Lastly, we compute the output

Disp(z,y) = BExt (mv?n*iﬁ(w;y) o w,y) ,

where by Lyobs (5.4) O T We denote the block-source with first
block T yobs () and second block that equals . There are two

potential problems with applying BExt the way we do above.
First, we see that the block-source fed to BExt depends on
the sample y, which is problematic since y is used as a sample
from the source as well. This, however, is a non-issue. Indeed,
recall that with high probability over (z,y) ~ (Xa,8, Ya,8)
it holds that v2%5(z, y) = vmia(Tx), and so ignoring a small
error, the computation of the extractor BExt above is the
same as BExt (mvmid(TX) o x,y) .

Now that we have shown that there are no dependencies be-
tween the two samples fed to BExt, we only need to make sure
that the first sample is indeed coming from a block-source
when sampling (z,y) ~ (Xa,8, Ya,3). Too see why this is
true, recall that vmia(T'x) is a descendant of leftSon(viop(T'x))
and that X, (ry) is a block-source. As X, g is obtained
from X by fixing X|eftson(vmld(TX)) (and by moving to low-
deficiency subsources) and since X, (ry) is a block-source,
we have that (Xa,6) v, (Ty) is also a block-source. Therefore,
(Xa,8)vmg(Tx) © Xa,p is also a block-source. This shows that
the application of BExt above is valid, and the output is
close to uniform with high probability over (Xa,g,Ya,s). In
particular, the output is non-constant.

3. ACKNOWLEDGEMENT

This work was done while the author was at the Depart-
ment of Computer Science and Applied Mathematics, Weiz-

mann Institute of Science. I wish to thank Ran Raz and Avi
Wigderson for their warm encouragement.

On a personal note, it is uncustomary to acknowledge one’s
partner in life in mathematical papers. However, given that
this paper was intensively written in the last month of my
wife’s pregnancy and in the first month of parenthood to the
newborn baby girl Meshi and to our sweet Yahli, I will allow
myself to make an exception — thank you Orit! Your support
and belief in my abilities are uncanny.

4. REFERENCES

[Abb72]

[Alo98]

[Bar06]

[BKS10]

[BRSW12]

[CGss]

[Chu81]

[CZ15]

[Erd47)

[FN93]

[Fra77]

H. L. Abbott. Lower bounds for some Ramsey
numbers. Discrete Mathematics, 2(4):289-293,
1972.

N. Alon. The shannon capacity of a union.
Combinatorica, 18(3):301-310, 1998.

B. Barak. A simple explicit construction of an
n°1°8™)_Ramsey graph. arXiv preprint
math/0601651, 2006.

B. Barak, G. Kindler, R. Shaltiel, B. Sudakov,
and A. Wigderson. Simulating independence:
New constructions of condensers, Ramsey
graphs, dispersers, and extractors. Journal of
the ACM (JACM), 57(4):20, 2010.

B. Barak, A. Rao, R. Shaltiel, and

A. Wigderson. 2-source dispersers for n°™"
entropy, and Ramsey graphs beating the
Frankl-Wilson construction. Annals of
Mathematics, 176(3):1483-1544, 2012.

B. Chor and O. Goldreich. Unbiased bits from
sources of weak randomness and probabilistic
communication complexity. SIAM Journal on
Computing, 17(2):230-261, 1988.

F.R.K. Chung. A note on constructive methods
for Ramsey numbers. Journal of Graph Theory,
5(1):109-113, 1981.

E. Chattopadhyay and D. Zuckerman. Explicit
two-source extractors and resilient functions.
Electronic Colloquium on Computational
Complezity (ECCC), 2015.

P. Erd6s. Some remarks on the theory of
graphs. Bulletin of the American Mathematical
Society, 53(4):292-294, 1947.

A. Fiat and M. Naor. Implicit O(1) probe
search. SIAM Journal on Computing,
22(1):1-10, 1993.

P. Frankl. A constructive lower bound for some

284

[FW81]

[GKRTS05]

[Gop14]

[Gro01]

[GS08]

[Li13]

[Lil5a]

[Li15b]

[Nag75]

[Nao92]

[PRO4]

[Ram28]

[Yao81]

Ramsey numbers. Ars Combinatoria,
3:297-302, 1977.

P. Frankl and R. M. Wilson. Intersection
theorems with geometric consequences.
Combinatorica, 1(4):357-368, 1981.

R. Gradwohl, G. Kindler, O. Reingold, and
A. Ta-Shma. On the error parameter of
dispersers. In Approximation, Randomization
and Combinatorial Optimization. Algorithms
and Techniques, pages 294-305. Springer, 2005.
P. Gopalan. Constructing Ramsey graphs from
Boolean function representations.
Combinatorica, 34(2):173-206, 2014.

V. Grolmusz. Low rank co-diagonal matrices
and Ramsey graphs. Journal of combinatorics,
7(1):R15-R15, 2001.

A. Gabizon and R. Shaltiel. Increasing the
output length of zero-error dispersers. In
Approzimation, Randomization and
Combinatorial Optimization. Algorithms and
Techniques, pages 430—443. Springer, 2008.

X. Li. Extractors for a constant number of
independent sources with polylogarithmic
min-entropy. In IEEE 54th Annual Symposium
on Foundations of Computer Science, pages
100-109, 2013.

X. Li. Improved constructions of two-source
extractors. Electronic Colloquium on
Computational Complezity (ECCC), 2015.

X. Li. Three-source extractors for
polylogarithmic min-entropy. Electronic
Colloquium on Computational Complezity
(ECCC), 2015.

Zs. Nagy. A constructive estimation of the
Ramsey numbers. Mat. Lapok, 23:301-302,
1975.

M. Naor. Constructing Ramsey graphs from
small probability spaces. IBM Research Report
RJ 8810, 1992.

P. Pudlék and V. Rédl. Pseudorandom sets
and explicit constructions of Ramsey graphs.
Quad. Mat, 13:3274AS-346, 2004.

F. P. Ramsey. On a problem of formal logic.
Proceedings of the London Mathematical
Society, 30(4):338-384, 1928.

A. Yao. Should tables be sorted? Journal of

the ACM (JACM), 28(3):615-628, 1981.

