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We construct a system H of exp(c log2 n/ log logn) subsets of a set of n elements such
that the size of each set is divisible by 6 but their pairwise intersections are not divisible
by 6. The result generalizes to all non-prime-power moduli m in place of m=6. This result
is in sharp contrast with results of Frankl and Wilson (1981) for prime power moduli and
gives strong negative answers to questions by Frankl and Wilson (1981) and Babai and
Frankl (1992). We use our set-system H to give an explicit Ramsey-graph construction,
reproducing the logarithmic order of magnitude of the best previously known construction
due to Frankl and Wilson (1981). Our construction uses certain mod m polynomials,
discovered by Barrington, Beigel and Rudich (1994).

1. Introduction

Generalizing the Ray-Chaudhuri–Wilson theorem [11], Frankl andWilson [9]
proved the following intersection theorem, one of the most important results
in extremal set theory:

Theorem 1.1 (Frankl–Wilson). Let F be a set-system over a universe
of n elements. Suppose µ0,µ1, . . .,µs are distinct residues modulo a prime p,
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such that for all F ∈F ,

|F | = k ≡ µ0 (mod p),

where k+s≤n, and for any two distinct F,G∈F :

|F ∩ G| ≡ µi (mod p) for some i, 1 ≤ i ≤ s.

Then

(1) |F| ≤
(

n

s

)
.

This theorem has numerous applications in combinatorics and in geom-
etry (e.g., the disproof of Borsuk’s conjecture by Kahn and Kalai [10] (cf.
[2], Sec. 5.6.), an explicit construction of Ramsey graphs, and geometric
applications related to the Hadwiger-problem [9].)

Frankl andWilson [9] asked whether inequality (1) remains true when the
modulus p is replaced by a composite number m, or at least in the subcase
s=m−1.

Frankl [8] answered the first of these questions (arbitrary s≤m) in the
negative: he constructed faster growing set-systems for m=6, as well as for
m=p2, p prime. For m=6, Frankl’s set-systems satisfy s=3 and |F|≈cn4.

On the other hand, Frankl and Wilson [9] proved that inequality (1)
remains in force when s=m−1 and m is a prime power.

In this paper we consider non-prime-power moduli m. For any such mod-
ulus, we give a very strong negative answer to both versions of the Frankl–
Wilson question: we prove that for s=m−1, no upper bound of the form
nf(m) exists. More precisely, we prove the following.

Theorem 1.2. Let m be a positive integer, and suppose that m has r > 1
different prime divisors: m= pα1

1 pα2
2 . . .pαr

r . Then there exists c= c(m)> 0,
such that for every integer h > 0, there exists an explicitly constructible
uniform set-system H over a universe of h elements, such that

(a) |H|≥exp
(

c (logh)r

(log logh)r−1

)
,

(b) ∀H∈H : |H|≡0 (modm),
(c) ∀G,H∈H,G �=H : |G∩H| �≡0 (modm).

Remark 1.1. The value of c is roughly p−r
r , where pr is the largest prime

divisor of m. The size of the sets in the set-system we construct is

(2) h
r−1
2r−1

+o(1).
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We note that for fixed m (m is not a prime power), the size of H grows
faster than any polynomial of n. This is quite surprising, since previously
it was believed that the failure of the attempts to prove a polynomial up-
per bound was due to the lack of techniques to handle non-prime-power
composite moduli.

Our result gives a strong negative answer to a conjecture of Babai and
Frankl ([2], Section 7.3, Conjecture C(r)). Babai and Frankl conjectured that
conditions (b) and (c) of Theorem 1.2 imply

|H| ≤
(

h

m − 1

)
;

whereas our result shows that no bound of the form hf(m) exists for com-
posite, non-prime power moduli m.

We can even strengthen statement (c) of Theorem 1.2 as follows:

Theorem 1.3. Theorem 1.2 remains valid if we add the following condition:

(d) ∀G,H ∈H, G �=H and ∀i∈{1,2, . . . ,r}, we have |G∩H|≡0 (mod pαi
i )

or |G∩H|≡1 (mod pαi
i ).

Remark 1.2. Theorem 1.3 implies that there exist super-polynomial size
set-systems H such that the size of each set in H is divisible by m and the
sizes of the pairwise intersections of the sets in H occupy at most 2r − 1
residue classes mod m out of the possible m−1 nonzero residue classes.

In fact, this result can be further strengthened: 3 residue classes of inter-
section size suffice! This answers a question of Peter Frankl (private com-
munication).

Corollary 1.1. Let m be a positive integer, and suppose that m has r>1
different prime divisors: m= pα1

1 pα2
2 . . .pαr

r . Then there exists c= c(m)> 0,
such that for every integer h > 0, there exists an explicitly constructible
uniform set-system H over a universe of h elements such that

(a) |H|≥exp
(

c (logh)2

log logh

)
,

(b) ∀H∈H : |H|≡0 (modm),
(c) the sizes of the pairwise intersections |G∩H| (G,H ∈H, G �=H) occupy

only 3 residue classes mod m, none of which is 0.

One of the striking applications of the Frankl–Wilson theorem for prime
moduli was an explicit construction of graphs of size exp(c log2n/ log logn)
without homogeneous subsets (cliques or anti-cliques) of size n. These are the
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largest explicit Ramsey-graphs known to-date. As an application of our The-
orem 1.2, we give an alternative construction of explicit Ramsey graphs of
the same logarithmic order of magnitude, i.e., of size exp(c′ log2 n/ log logn).
(But our c′ is less than their c).

A key ingredient of our construction is a low-degree polynomial con-
structed by Barrington, Beigel and Rudich [5], to represent the Boolean
“OR” function mod m. Any reduction of the degree of such polynomials
would yield improved explicit Ramsey graphs.

2. Preliminaries

Let f :{0,1}n →{0,1} be a Boolean function and let m be a positive integer.
Barrington, Beigel and Rudich [5] gave the following definition:

Definition 2.1. The polynomial P with integer coefficients weakly repre-
sents the Boolean function f modulom if there exists an S⊂{0,1,2, . . .,m−1}
such that for all x∈{0,1}n,

f(x) = 0 ⇐⇒ (P (x) mod m) ∈ S.

Here (a mod m) denotes the smallest non-negative b≡a mod m.

We are interested in the smallest degree of polynomials representing f
modulo m. Without loss of generality we may assume P is multilinear (since
x2

i =xi over {0,1}n).
Let ORn :{0,1}n →{0,1} denote the n-variable OR-function:

ORn(x1, x2, . . . , xn) =
{
0, if x1 = x2 = · · · = xn = 0
1 otherwise.

Suppose that the polynomial P weakly represents ORn modulo a prime
p. Without loss of the generality we may assume that for x∈{0,1}n,

P (x) ≡ 0 mod p ⇐⇒ x = (0, 0, . . ., 0).

Then
1− P p−1(1− x1, 1− x2, . . ., 1− xn)

is exactly the n-variable AND function, which can uniquely be written as a
multilinear monomial

x1x2x3. . .xn.

Consequently, if the polynomial P weakly represents ORn over GF (p), then
its degree is at least ⌈

n

p − 1

⌉
.
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Tardos and Barrington [12] proved that the same conclusion holds if p is
a prime power.

On the other hand, Barrington, Beigel and Rudich [5] proved that the
conclusion fails for composite moduli with at least two distinct prime divi-
sors:

Theorem 2.4 (Barrington, Beigel, Rudich). Given m = pα1
1 pα2

2 . . .pαr
r

where the pi are distinct primes, there exists an explicitly constructible
polynomial P of degree O(n1/r) which weakly represents ORn modulo m.

For completeness, we reproduce here a short proof of this theorem.
Proof. Let Sk(x) denote the kth elementary symmetric polynomial, i.e.
the sum of all multilinear monomials of degree k, formed from variables
x1,x2, . . .,xn. For x∈{0,1}n, the weight of x is defined as wt(x)=

∑n
i=1 xi.

If wt(x)=�, then

sk(x) =
(

�

k

)
.

Since the value of sk(x) depends only on wt(x), with some abuse of the
notation we shall write sk(x) as sk(j) where j=wt(x). Using this notation,
one can formulate the following observation made in [5]:

Lemma 2.1. [5] Let k be a positive integer, p be a prime and let e be the
smallest integer satisfying k<pe. Then sk(j)≡sk(j+pe) (mod p).

Proof. We need to prove(
j + pe

k

)
≡

(
j

k

)
(mod p).

This is immediate from the identity
(

u+ v

t

)
=

t∑
w=0

(
u

w

)(
v

t − w

)
,

and the elementary fact that for any 1≤�<pe, p is a divisor of
(pe

�

)
.

Now, for i=1,2, . . .,r, let ei be the smallest integer that satisfies

pei
i > �n1/r�.

We define, for i=1,2, . . .,r, the symmetric polynomial Gi(x) by

Gi(x) =
p

ei
i −1∑
j=1

(−1)j+1sj(x).
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One can easily prove (using the binomial expansion of (1−1)p
ei
i −1), that Gi

correctly computes over the integers the OR function for inputs of weight at
most pei

i −1. Consequently, Gi correctly computes modulo pi the OR function
for inputs of weight at most n1/r, and, additionally, Gi mod pi is periodic
with period pei

i .
And now, by the Chinese Remainder Theorem, there exists a polynomial

P which satisfies
P ≡ Gi (mod pi)

for i = 1,2, . . .,r, and the degree of P is the maximum of the degrees of
polynomials Gi, O(n1/r).

It is obvious that for x ∈ {0,1}n, if wt(x) �= 0 then there exists an i,
1≤ i≤r, such that wt(x) �≡0 mod pei

i , so P (x) �≡0 mod p1p2. . .pr. In addition,
P (0,0, . . .,0)=0. Consequently, P weakly represents the OR function for all
inputs in {0,1}n modulo p1p2. . .pr. Since p1p2. . .pr is a divisor of m, if P (x)
is not 0 modulo p1p2. . .pr then it is not 0 modulo m. Consequently, P weakly
represents the OR function for all inputs in {0,1}n modulo m.

Example. Let m=6, and let

G1(x) =
23−1∑
j=1

(−1)j+1sj(x),

and

G2(x) =
32−1∑
j=1

(−1)j+1sj(x).

Then
P (x) = 3G1(x) + 4G2(x)

weakly represents OR71 modulo 6 (or modulo 6� for any integer �), and its
degree is only 8.

Corollary 2.2. Let m= pα1
1 pα2

2 . . .pαr
r . Then there exists an explicitly con-

structible polynomial P ′ with n variables and of degree O(n1/r) which is
equal to 0 on x = (0,0, . . . ,0) ∈ {0,1}n, it is nonzero mod m for all other
x ∈ {0,1}n, and for all x ∈ {0,1}n and for all i ∈ {1, . . . ,r}, P (x) ≡ 0
(mod pαi

i ) or P (x)≡1 (mod pαi
i ).

Proof. Let us consider first the easy case, when α1 = α2 = · · · = αr = 1.
Then the statement is immediate from Lemma 2.1 and from the fact that
polynomials Gi not only represent, but compute the OR function for inputs
of weight less than pei

i .
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In the general case, let us observe that Gi is either 0 or 1 modulo pi on
{0,1}n. Then we need the modulus-amplifying polynomials Ri of degree 2αi

of Beigel and Tarui [6], with the following properties:

N ≡ 0 (mod pi) =⇒ Ri(N) ≡ 0 (mod pαi
i )

and
N ≡ 1 (mod pi) =⇒ Ri(N) ≡ 1 (mod pαi

i ).

Now, set G′
i=Ri◦Gi and construct P ′ by applying the Chinese Remainder

Theorem to the G′
i.

3. The Lower Bound

Proof of Theorem 1.2

Let P (z1,z2, . . .,zn) be a polynomial of degree d which satisfies that
P (0,0,0, . . . ,0)=0, and for every (z1,z2, . . .,zn)∈{0,1}n

P (z1, z2, . . ., zn) ≡ 0 (mod m) ⇐⇒ z1 = z2 = . . . = zn = 0.

An explicit construction of such P of degree d=O(n1/r) was given in The-
orem 2.4.
Let Q(z1,z2, . . .,zn) = P (1− z1,1− z2, . . ..,1− zn). Then Q(1,1,1, . . . ,1) = 0,
and for all z∈{0,1}n we have

(3) Q(z) ≡ 0 (mod m) ⇐⇒ z1 = z2 = . . . = zn = 1.

Using the polynomial Q we state our main Lemma:

Lemma 3.2. For every integer n> 0, there exists a uniform set-system H
over a universe of 2(m−1)n2d/d! elements which is explicitly constructible
from the polynomial Q and satisfies

(a) |H|=nn,
(b) ∀H∈H : |H|≡0 (modm),
(c) ∀G,H∈H,G �=H : |G∩H| �≡0 (modm).

Lemma 3.2 easily yields Theorem 1.2 setting d=Θ(n1/r) and using ele-
mentary estimations for the binomial coefficients.

Proof of Lemma 3.2. Q can be written as

Q(z1, z2, . . ., zn) =
∑

i1,i2,...,i�

ai1,i2,...,i�zi1zi2 . . .zi� ,
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where 0≤�≤d, and ai1,i2,...,i� is integer, 1≤ i1 <i2 < · · ·<i�≤n. Let us define

(4) Q̃(z1, z2, . . ., zn) =
∑

i1,i2,...,i�

ãi1,i2,...,i�zi1zi2 . . .zi� ,

where ãi1,i2,...,i� =(ai1,i2,...,i� mod m) is the smallest, positive integer, congru-
ent to ai1,i2,...,i� modulo m, for 1≤ i1 <i2< · · ·<i�≤n.

We note, that (3) is satisfied for Q̃, but Q̃(1,1,1, . . . ,1) is not necessarily 0.

Let the function δ :{0,1, . . .,n−1}×{0,1, . . .,n−1}→{0,1} be defined as

δ(u, v) =
{ 1, if u = v,
0 otherwise.

Let A=(axy) be an nn×nn matrix (x,y∈{0,1,2, . . . ,n−1}n).
We define the entry axy as follows:

(5) axy = Q̃(δ(x1, y1), δ(x2, y2), . . . , δ(xn, yn)) mod m.

We note that axx = Q̃(1,1, . . . ,1) ≡ 0 (modm). Conversely, if axy ≡ 0
(modm) then x=y.

By equation (4), the polynomial Q̃(z) is a sum of the monomials of the
form zi1zi2 . . .zi� (�≤d). We wish to keep all coeffcients equal to 1; therefore
we shall say that the monomial zi1zi2 . . .zi� (�≤ d) occurs with multiplicity
ãi1,i2,...,i� in this sum. Note that each multiplicity is a nonnegative integer
≤m−1.

Consequently, the matrix A is a sum of the matrices Bi1,i2,...,i� =
(bi1,i2,...,i�

x,y ), corresponding to the monomial zi1zi2 . . .zi� in the following way:

bi1,i2,...,i�
x,y = δ(xi1 , yi1)δ(xi2 , yi2) . . . δ(xi� , yi�).

This matrix occurs in the sum with multiplicity ãi1,i2,...,i� .
It is easy to verify that Bi1,i2,...,i� is permutationally equivalent to the

matrix

(6)




J1

0
. . .

0
Jn�




where the diagonal blocks Ji are all-ones matrices of size nn−�×nn−�, and
there are exactly n� pairwise disjoint all-ones blocks in Bi1,i2,...,i� . “Permu-
tationally equivalent” means that there exists a permutation such that if it
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is applied both to the rows and to the columns of the matrix, the result is
equal to (6). Let us refer to these all-ones blocks of Bi1,i2,...,i� as B-blocks. We
shall say that each B-block of Bi1,i2,...,i� occurs with multiplicity ãi1,i2,...,i� .

By equation (4), A can be written in the following form:

(7) A =
∑

i1,i2,...,i�

ãi1,i2,...,i�Bi1,i2,...,i�.

Lemma 3.3. Taking multiplicities into account,

(a) every cell of the main diagonal of A is covered by the same number of
B-blocks, and this number is divisible by m;

(b) for any pair of cells of the main diagonal of A, the number of those
B-blocks which cover both members of the pair, is not divisible by m.

Proof. We note that the number of B-blocks covering cell (x,y) is axy. Now
statement (a) follows by equation (3), observing that for all x,

axx = Q̃(1, 1, . . . , 1) ≡ 0 (mod m).

For part (b), we note that the B-blocks are square submatrices, sym-
metric to the diagonal; therefore a B-block covers the cells (x,x) and (y,y)
exactly if it covers the cell (x,y). The number of B-blocks covering both
(x,x) and (y,y) is therefore axy �≡0 (modm) , again by equation (3).

Corollary 3.3. There exists an explicitly constructible hypergraph G with
nn vertices and fewer than 2(m−1)n2d/d! edges, such that every vertex is
contained in the same number of edges, and this number is divisible by m;
while for any two vertices, the number of edges, containing both of the ver-
tices, is not divisible by m. (We allow multiple edges and take multiplicities
into account.)

Proof. From Lemma 3.3, choose the cells of the diagonal of A for the vertices
and the intersections of the B-blocks with the diagonal for edges (with the
corresponding multiplicity).

The number of edges is

h := Q̃(n, n, . . . , n) =
∑
�≤d

∑
ãi1,i2,...,i�n

� ≤ (m − 1)
∑
�≤d

(
n

�

)
n�

< (m − 1)
∑
�≤d

n2�/�! < 2(m − 1)n2d/d!,

assuming, as we may, that n≥2d.
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We note that the number of edges containing each vertex is

Q̃(1, 1, . . . , 1) ≤ (m − 1)
((

n

d

)
+

(
n

d − 1

)
+ . . .

(
n

0

))
< 2(m − 1)

(
n

d

)
.

Now we are ready to complete the proof of Lemma 3.2.
Let us consider the dual of the hypergraph of Corollary 3.3, i. e., let the

universe be the set of B-blocks, and if a B-block was present a times in the
hypergraph G, then it will correspond to a different points (or elements) in
the universe. Consequently, our universe is a set (rather than a multiset).
The size of the universe is h<2(m−1)n2d/d!.

The diagonal cells of A correspond to the members of the set-system H:
the set corresponding to cell (x,x) consists of exactly those B-blocks which
cover (x,x). Therefore |H|=nn.

Since every diagonal cell of A is covered by the same number of B-
blocks, the resulting H is a uniform set system. As discussed previously, this
number (the size of the members of H) is Q̃(1,1, . . . ,1)≤(m−1)

∑d
�=0

(n
d

)
<

2(m−1)
(
n
d

)
.

From Corollary 3.3, statements (a), (b), (c) of Lemma 3.2 follow.

Remark 3.3. We note from the foregoing that the number of vertices of H
is h := Q̃(n,n, . . . ,n), and the number of vertices of each member of H is
Q̃(1,1, . . . ,1). We note that Q̃(n,n, . . . ,n)≤nd Q̃(1,1, . . . ,1).

To prove the estimate on the size of the members of H in terms of h
(the number of vertices of H) given in Remark 1.1, we first add dummy
vertices to increase h to its upper bound h′ :=nd Q̃(1,1, . . . ,1) stated above.
Now, since this quantity is still ≤ 2(m−1)n2d/d!, we see, using the bound
d=O(n1/r) guaranteed by Theorem 2.4, that

nd ≥ (h′)
r

2r−1
+o(1)

and therefore the size of the members of H is

Q̃(1, 1, . . . , 1) ≤ (h′)
r−1
2r−1

+o(1),

as claimed in equation (2).

Proof of Theorem 1.3. The statement is immediate if the polynomial P ′

of Corollary 2.2 is used for the construction of the set-system H in the proof
of Theorem 1.2 in the place of the polynomial P .
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Proof of Corollary 1.1. Let m′ = pα1
1 pα2

2 , and apply Theorem 1.3 for
constructing a set-system H for h and this m′. The intersections occupy
only 3 residue classes modulo m′. Now replace every point of the universe
by m/m′ new points; the new points will be the members of exactly the
same sets of the set-system as the old point. The statement follows.

4. An Application: Ramsey Graphs

The set-system H of Theorem 1.2 yields new families of explicit Ramsey-
graphs.

Theorem 4.5 (Frankl–Wilson, 1981). For t≥ 3, there exists an explic-

itly constructible graph on exp
(

c (log t)2

(log log t)

)
vertices which does not contain

either a complete graph or an independent set of size t.

The constant c given in [9] is c= 1
4 . Our construction yields c= 2

81 only.

In addition to giving a novel proof of Theorem 4.5, we extend it to the case
of several colors:

Theorem 4.6. For r ≥ 2, t ≥ 3, there exists an explicitly constructible r-

coloring of the edges of the complete graph on exp
(

cr
(log t)r

(log log t)r−1

)
vertices

such that no color contains a complete graph on t vertices. Here cr=c/p2r
r ∼

c(r lnr)−2r, where pr is the rth prime, and c>0 is an absolute constant.

The existence of graphs with ct2t/2 vertices without a complete subgraph
or an independent set of size t was proved in Erdős’s celebrated 1947 paper
[7]. Erdős’s probabilistic proof can be easily adapted to yield the existence of
an r-coloring of the edges of the complete graph on c(r)trt/2 vertices, without
a monochromatic complete subgraph on t vertices. (The exact formula is
�(t/e)r(t−1)/2−1/t)� so we can take c(r)=1/(er).)

Proof of Theorem 4.6. Let m=p1p2. . ..pr, where pi is the ith prime. Let
K be a complete graph on vertex-set H, where H is a set-system with the
properties stated in Theorem 1.2, with h= �t1/pr�. We define an r-coloring
of the edges of K by colors 1,2, . . .,r as follows: edge UV , where U,V ∈H,
has color i if

i = min
j∈{1,2,...,r}

{j : pj does not divide |U ∩ V |}.
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Now suppose that K contains a monochromatic complete graph Ci of �i

vertices in color i. Then the sets, corresponding to the vertices of Ci, give a
family of �i sets, such that the size of each set is divisible with pi, but the
size of the intersection of any two elements of this set-system is not divisible
by pi. Consequently, by Theorem 1.1,

�i ≤
(

h

pi − 1

)
< t.

5. Open Problems

Problem 1. (Barrington, Beigel and Rudich [5]) Does there exist a poly-
nomial P in n variables, with integer coefficients, of degree d=o(

√
n), which

weakly represents the n-variable OR function modulo 6? (Recall, that this
means that P (0,0, . . . ,0)=0, and P (x) �≡0 mod 6 for any x∈{0,1}n,x �=0.)

If the answer is yes for some d= nε and the polynomials are explicitly
constructed, then our method yields explicit Ramsey-graphs on

exp
(

c
(log h)1/ε

(log log h)1/ε−1

)

vertices, with no complete subgraph and no independent set of size h.
For symmetric polynomials, Barrington, Beigel and Rudich [5] have

shown that the degree is Ω(
√

n).
Showing only the existence of polynomials, weakly representing the OR

function with degree o(
√

n), would also have considerable theoretical in-
terest, since this result would imply the existence of larger set-systems in
Theorem 1.2. Here we should also mention that the best lower bound is due
to G. Tardos and Barrington [12]. They proved that if the modulus m has
r > 1 different prime divisors, then every polynomial, weakly representing
the function ORn modulo m, has degree at least

(log n)1/(r−1).

Problem 2. Does there exist a quadratic polynomial P in n variables,
with integer coefficients, which weakly represents the n-variable OR function
modulo 2α3β , where both 2α and 3β are o(

√
n)? If the answer is yes, then

combining this P and the polynomial of Barrington, Beigel and Rudich [5],
we would obtain a polynomial, satisfying the requirements of Problem 1.

Problem 3. It remains an open question whether, for a fixed positive inte-
ger m, a better than exponential (exp(o(n)) upper bound holds for the size
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of set-systems satisfying that the size of each set is divisible by m while the
sizes of their pairwise intersections are not divisible by m.

This problem is open even for m=6. Our main result shows that if m is
not a prime power then no polynomial upper bound (O(nc)) holds. (If m is
a prime power then a polynomial upper bound holds by Frankl–Wilson 1.1.)
Problem 4. If in Problem 3 we assume additionally that the sizes of the
pairwise intersections occupy only two residue classes mod m then there may
even be a polynomial upper bound (perhaps O(n2)), yet we are not aware
of any better-than-exponential upper bound even for this case. This, too, is
open for m=6.
Acknowledgments. The author wishes to thank Zoltán Király and David
Mix Barrington for fruitful discussions and to Péter Frankl for valuable com-
ments and suggestions. The author is especially grateful to Laci Babai for
numerous helpful remarks and suggestions. The author acknowledges the
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6. Added in Proof: Another multi-colored Ramsey graph
construction

This section describes further developments regarding the multi-color Ram-
sey graph construction (Theorem 4.6).

While the present paper was being refereed, we found a much simpler
proof of Theorem 4.6 (explicit multi-color Ramsey graphs). In addition to
its simplicity, the new proof also yields a better constant in the exponent,
matching the Frankl–Wilson bound in the case of 2 colors.

Originally we intended to publish this construction in a separate note.
However, while the present paper was edited for printing, it was pointed out
to us that Noga Alon’s recent paper [1] includes a multi-colored Ramsey-
graph construction. Alon’s work and ours was independent, although our
original submission, which included the proof of Theorem 4.6, predates
Alon’s.

Alon’s construction as well as our two separate constructions share the
idea of working modulo a product of consecutive primes within an interval
(p,p(1+ ε)). Alon’s construction gives the same constant in the exponent
as the one we give below. The two constructions are rather similar but not
identical. Here we describe our version.

A q-ary code of length n is a subset of the set of qn strings of length
n over an alphabet of size q. We shall use the following extension of the
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Frankl–Wilson theorem in the analysis of our construction. The result is
due to Babai, Snevily, and Wilson [3].

Theorem 6.7 ([3, Theorem 4]). Let C be a q-ary code of length n and let
p be a prime. If the Hamming distances that occur between pairs of distinct
codewords in C all belong to s residue classes mod p, no one of which is 0
mod p, then

(8) |C| ≤
s∑

j=0

(q − 1)j
(

n

j

)
.

The construction. For a sufficiently large n, let p1,p2, . . . ,pr be distinct
primes in the interval n1/r <pi<(1+ε)n1/r for i=1,2, . . . ,r.

The vertex set of our complete graph will be the set V =Σn, the set of
strings of length n over the alphabet Σ={0,1, . . . ,q−2,q−1}. For x,y∈V
let d(x,y) denote their Hamming-distance.

We define the r-coloring as follows: two strings x,y∈V (x �=y) are joined
by an edge of color i if i=min{� : p� � | d(x,y)}. This is an r-coloring of the
edges of the complete graph on vertex set V because p1p2 · · ·pr >n.

Analysis. Suppose that Vi⊂V induces a monochromatic complete subgraph
of color i. Then, by inequality (8),

(9) |Vi| ≤
pi−1∑
j=0

(q − 1)j
(

n

j

)
.

Set q=�n1/r�. Then the right hand side of equation (9) is at most exp((1+
ε)n1/r logn). Consequently,

|V | = qn = �n1/r�n ≥ exp
(

c(log |Vi|)r
(log log |Vi|)r−1

)
,

where c=((1+ε)r)−r .

Acknowledgment. The author wishes to thank Laci Babai for his advice
regarding this proof and especially for pointing out reference [3].

We should also mention another relevant result. Babai, Frankl, Kutin
and Štefankovič [4] recently filled the gap between the Frankl–Wilson The-
orem (prime modulus, Theorem 1.1) and our main result (non-prime-power
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modulus, Theorem 1.2) by showing that under the conditions of the Frankl–
Wilson Theorem modulo a prime power, a bound of the form

|F| ≤
f(s)∑
k=0

(
n

k

)

holds, where f(s)≤2s−1. Note that for fixed s, the right hand side is poly-
nomially bounded as a function of n (like in the Frankl–Wilson Theorem
but unlike in our Theorem 1.2).
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