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Explicit construction of Ramsey graphs or graphs with no large clique or independent
set, has remained a challenging open problem for a long time. While Erdős’ probabilistic
argument shows the existence of graphs on 2n vertices with no clique or independent set of
size 2n, the best explicit constructions achieve a far weaker bound. There is a connection
between Ramsey graph constructions and polynomial representations of Boolean functions
due to Grolmusz; a low degree representation for the OR function can be used to explicitly
construct Ramsey graphs [17,18].

We generalize the above relation by proposing a new framework. We propose a new
definition of OR representations: a pair of polynomials represent the OR function if the
union of their zero sets contains all points in {0,1}n except the origin. We give a simple
construction of a Ramsey graph using such polynomials. Furthermore, we show that all the
known algebraic constructions, ones to due to Frankl-Wilson [12], Grolmusz [18] and Alon
[2] are captured by this framework; they can all be derived from various OR representations
of degree O(

√
n) based on symmetric polynomials.

Thus the barrier to better Ramsey constructions through such algebraic methods ap-
pears to be the construction of lower degree representations. Using new algebraic tech-
niques, we show that better bounds cannot be obtained using symmetric polynomials.

1. Introduction

This paper studies a problem at the intersection of combinatorics and com-
putational complexity.
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The combinatorial problem is that of explicitly constructing Ramsey
graphs. Let α(G) and ω(G) denote the sizes of the largest independent set
and largest clique, respectively in a graph G. Ramsey’s theorem shows that
every graph on 2n vertices has max(α(G),ω(G))≥n/2. In his seminal 1947
paper introducing the probabilistic method, Erdős showed that there ex-
ist graphs with 2n vertices where α(G),ω(G) ≤ (2 + o(1))n [11]. He posed
the question of constructing such Ramsey graphs explicitly and offered a
prize of $100 for it. This is a central open problem in explicit combinatorial
constructions; the best known constructions to date are far from the prob-
abilistic bound. The first breakthrough on this problem was due to Frankl
and Wilson in 1981 [12]; their construction gives α(G),ω(G)≤ c

√
n logn. For

over two decades, there was no improvement on this bound despite much
effort. However, there were other constructions known due to Grolmusz and
Alon [17,18,2] that achieved exactly the same bound, and also extended to
the problem of constructing multi-color Ramsey graphs, which is to t-color
the edges of the complete graph so that there is no large monochromatic
clique. At first sight, the construction of Grolmusz is quite different from
that of Alon and Frankl-Wilson, yet it gives exactly the same bound. All
three constructions use algebraic techniques, though in different ways. Re-
cently, the Frankl-Wilson bound was beaten by a new construction due to

Barak, Rao, Shaltiel and Wigderson [8] which gives α(G),ω(G)≤2(logn)
o(1)

.
Their construction uses many techniques from pseudorandomness, especially
those related to extracting randomness from independent sources.

The complexity problem is to prove tight degree bounds for polynomials
computing Boolean functions over Zm. Motivated by the problem of showing
lower bounds for ACC (the class of circuits with And, Or and Mod gates),
Barrington, Beigel and Rudich (BBR) studied polynomial representations
of Boolean functions modulo composites [4]. They found surprisingly that
such representations are much more powerful over Z6 than over Zp when p is
prime. They showed that the OR function can be represented by symmetric
polynomials of degree O(

√
n) over Z6. In contrast an Ω(n) lower bound is

known for the degree of such polynomials over Zp. BBR proved a matching
Ω(
√
n) lower bound for symmetric polynomials representing the OR func-

tion over Z6, and asked if better representations exist using asymmetric
polynomials. Tardos and Barrington proved a lower bound of Ω(logn) [25].
This is the best lower bound known for any function, despite much effort
[16,26,15,1,7]. The main open question in this area is whether asymmetric
polynomials can give lower degree representations of symmetric functions
than symmetric polynomials.
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A surprising connection between these two problems was discovered by
Grolmusz, who used the OR polynomials of BBR to construct Ramsey
graphs [17,18,19]. As an intermediate step, he constructed a set system of
size nω(1) on n elements where all set sizes are 0 mod 6 but all intersec-
tions are non-zero mod 6, settling an open problem in extremal set theory.
He constructed Ramsey graphs from this set system and showed that lower
degree OR representations mod 6 would give better Ramsey graphs.

1.1. Our results

Our work generalizes and extends the connection between OR polynomials
and Ramsey graphs. We propose a new definition of an OR representation:
a pair of polynomials represent the OR function on n variables if the union
of their zero sets contains all points in {0,1}n except the origin. We give a
simple construction of a Ramsey graph from such representations. This view-
point based on OR polynomials unifies the constructions of Frankl-Wilson,
Alon and Grolmusz: they can all be derived from various OR representa-
tions of degree O(

√
n) based on symmetric polynomials. Thus the barrier to

better Ramsey constructions through current algebraic techniques appears
to be the construction of lower degree representations. On one hand, since
the best lower bound for any of these representations is only Ω(logn) there
is the possibility of better constructions. On the other hand, we show that
further improvements cannot come from representations using symmetric
polynomials; we prove an Ω(

√
n) lower bound for such representations.

1.1.1. Ramsey graphs from OR representations. Let X=(X1, . . . ,Xn)
denote a vector of variables and x = (x1, . . . ,xn) denote a Boolean vector.
The following definition of Boolean function representation modulo m was
introduced by BBR [4].

Definition 1. Polynomial P (X)∈Zm[X] weakly represents the function f
mod m if for x,y∈{0,1}n, if f(x) 6=f(y) then P (x) 6≡P (y) mod m.

We propose the following definition of an OR representation.

Definition 2. Polynomials P (X)∈Zp[X] and Q(X)∈Zq[X] represent the
OR function on n variables if

P (0, . . . , 0) ≡ 1 mod p and Q(0, . . . , 0) ≡ 1 mod q

and for x∈{0,1}n \(0, . . . ,0)

P (x) ≡ 0 mod p or Q(x) ≡ 0 mod q
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where p,q are distinct primes. The degree of the representation is d =
max(deg(P ),deg(Q)).

By the Chinese Remainder Theorem (CRT), there is a single polynomial
R(X)∈Zpq[X] that is congruent to P (X) modulo p and Q(X) modulo Q.
This polynomial weakly represents OR mod pq. However, the specific choice
of values output by the weak representation is important for our application.
The construction of BBR gives a degree O(

√
n) OR representation using

polynomials over Z2 and Z3. A simple representation of degree O(
√
n) with

n = pq− 1 using polynomials over Zp and Zq can be derived from Alon’s
construction. This highlights another difference about our definition and
weak representations: for Ramsey constructions, we are not restricted to
any fixed moduli p and q, we are free to choose them in any way, (possibly
as functions of n) so that the degree is minimized as a function of n.

We give a simple Ramsey construction based on OR representations: the
vertex set is {0,1}n and we add edge (x,y) to G if x⊕y is in the zero
set of P (X), where x⊕y denotes the symmetric difference of x and y (or
equivalently the co-ordinatewise sum modulo 2). In order to bound α(G)
and ω(G), we use the notion of representations of graphs over spaces of
polynomials introduced by Alon [2].

Definition 3. Let G(V,E) be a graph and F be a set of polynomials in
n variables over field F. A polynomial representation of G over F is an
assignment of a polynomial Pv(X)∈F and a point xv∈Fn to v∈V where

• For each v∈V , Pv(xv) 6=0.
• If (u,v)∈E then Pv(xu)=0.

The conditions above imply that the polynomials assigned to a clique
are linearly independent, hence ω(G)≤ dimF(F) which is the dimension of
the F vector space spanned by polynomials in F . We use the polynomial
P (X) to construct a representation of G over Zp and Q(X) to construct
a representation of G over Zq. The Frankl-Wilson construction can also
be viewed in this framework, where we represent G over Zp and G over Q.
However, quoting Alon ‘It seems that this construction does not extend to the
case of more than 2 colors’ [2]. We propose a definition of OR representation
which leads to such an extension.

Definition 4. Let p be a prime and a,b ≥ 1. Polynomials P (X) ∈ Zpa [X]
and Q(X)∈Zpb [X] represent the OR function on n variables if

P (0, . . . , 0) 6≡ 0 mod pa and Q(0, . . . , 0) 6≡ 0 mod pb
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and for x∈{0,1}n \(0, . . . ,0)

P (x) ≡ 0 mod pa or Q(x) ≡ 0 mod pb.

The degree of the representation is d=max(deg(P ),deg(Q)).

To differentiate the representations of Definitions 2 and 4, we refer to them
as prime representations and prime-power representations, respectively. The
Frankl-Wilson construction can be used to show that for n=p2−1, there exist
OR representations of degree O(

√
n). The interesting feature of this repre-

sentation is that it does not use the Chinese Remainder Theorem (CRT).
The construction of Ramsey graphs from prime-power representations stays
the same; the difference is in the analysis. For this, we introduce polynomial
representations of G over Zpa .

Definition 5. Let G(V,E) be a graph and F a set of polynomials in n
variables over Z. A polynomial representation of G over Zpa is an assignment
of a polynomial Pv(X)∈F and a point xv∈Zn to v∈V such that

• For each v∈V , Pv(xv) 6≡0 mod pa.
• If (u,v)∈E then Pv(xu)≡0 mod pa.

We show that the polynomials assigned to a clique are linearly indepen-
dent over Q so ω(G) is bounded by dimQ(F). The reader might wonder
whether this means that in Definition 4, we could work with polynomials
over Q instead of modulo powers of p. But we cannot get low-degree rep-
resentations with both polynomials P and Q coming from Q (or the same
field in general). To see this, note that then P (X)Q(X) would be 0 at every
point in {0,1}n except the origin, and such a polynomial requires degree n.
But this argument does not extend to prime-power representations because
of zero-divisors.

All the OR representations above achieve a bound of O(
√
n) using sym-

metric polynomials. Plugging them into the simple construction above gives

α(G),ω(G)≤c
√
n logn

1 as opposed to the best bound of c
√
n logn. However, by

massaging the polynomials and working with set intersections as opposed to
distances, we can get exactly the constructions of Frankl-Wilson, Grolmusz
and Alon. Here are some advantages of our unified view of these construc-
tions:

• It places the constructions of Alon and Frankl-Wilson in the context of
OR polynomials, and raises the possibility of getting better constructions
from low degree representations. The notions of prime-power represen-
tations of graphs and Boolean functions arising from the Frankl-Wilson
construction are of independent interest.
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• It relates the construction of Grolmusz to those of Frankl-Wilson and
Alon, which look very different at first. Our Ramsey graph construction
from the OR polynomial of BBR is simple and direct. In fact it takes
some work to show that we get the same graph as Grolmusz. Viewing
this construction in terms of set intersections, we derive improved bounds
for set systems with restricted intersections modulo prime powers.
• In this view, all the constructions naturally extend to multicolor Ramsey

graphs. To construct t-color Ramsey graphs, we define OR representa-
tions involving t polynomials over Zq1 , . . . ,Zqt where q1, . . . , qt are prime
powers. Taking powers of the same prime p extends the Frankl-Wilson
construction.

1.1.2. Lower bounds. A natural question is to show tight degree bounds
for OR representations. A better upper bound would lead to better Ram-
sey graphs. Lower bounds are interesting from the complexity-theory view-
point of understanding polynomial representations over composites. For the
OR function, we believe Definition 2 is the right one to use, since it seems
to eliminate dependence of the degree on the modulus pq. Also it places
the problem in the context of understanding the zero-sets of low degree
polynomials over Zp. This question has been studied in various other con-
texts including low degree testing, zero-testing and derandomization (see
Section 6). Prime-power representations are interesting since they do not
rely on the CRT. Interestingly, the Ω(logn) lower bound [25] also does not
use the CRT, so it applies to prime-power representations too. It is possi-
ble that proving bounds for prime-power representations is easier than the
prime case.

We show a degree Ω(
√
n) lower bound for OR representations by sym-

metric polynomials. Thus better representations (if they exist) must use
asymmetric polynomials. A lower bound of Ω(

√
n) is known for symmet-

ric polynomials that weakly represent OR mod 6 [4]. Bhatnagar et al. [7]
introduced the use of tools from communication complexity for proving de-
gree lower bounds for symmetric polynomials. One might guess that similar
arguments should work even for our definition of OR representations, but
this is incorrect. In fact those arguments will not suffice even for prime rep-
resentations. The precise bound they prove, and which holds for all weak
representations is deg(P ) ·deg(Q)≥ n/(pq). This is good enough when p,q
are small, but if n< pq as in Alon’s construction, this gives a bound of 1.
One cannot hope for a stronger result since the polynomial

∑
iXi of degree

1 weakly represents OR on n<pq variables over Zpq. Our definition restricts
the values output by the weak representation, making it possible to show
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bounds independent of the modulus m. But exploiting this difference calls
for new techniques, beyond the periodicity based arguments used for weak
representations [4,7].

1.1.3. Our techniques. While lower bounds for the prime and prime-
power cases are very different, they have similar high-level structure: an al-
gebraic part where we show that if the zero-set of the polynomial has certain
structure, then the polynomial must have high degree, and a combinatorial
part where we argue that there is no good partition of hypercube, that any
partition results in one of the polynomials having high degree.

For the prime-power case, we translate the problem to one about uni-
variate polynomials modulo Zpa . However, over Zpa it is no longer true that
a degree d polynomial can have only d roots (take Xa for instance); so we
need new tools for degree lower bounds. Building on an algorithm for in-
terpolation over Zpa by the author [14], we define a greedy sequence, which
roughly is a sequence that is distributed uniformly among various congru-
ence classes modulo powers of p. We show that the longest greedy sequence
in the zero-set lower-bounds the degree of a polynomial. Then a combina-
torial argument shows that in any partition of integers [1, . . . ,n] into A and
B, one of them contains a long greedy sequence.

For the prime case, we view a symmetric polynomial P acting on a 0-1
vector x as a polynomial P̄ acting on in the digits of the base p expansion
of the weight wt(x) following Bhatnagar et al. [7]. There it was shown that
P̄ can be used to bound deg(P ) within a factor of p; we introduce a notion
of weighted degree of P̄ that exactly captures the degree of P . The com-
binatorial part of the proof uses a number theoretic lemma which seems of
independent interest. It says that if p,q are primes, n<pq and A⊆Z∗p and
B⊆Z∗q are subsets so that every number in [1, . . . ,n] lies in A mod p or in
B mod q, then one of A or B has to be large.

1.2. Recent developments

A preliminary version of this paper appeared in CCC’06 [13]. Since then,
there have been some progress related to some of the problems mentioned
here which we will briefly summarize.

A recent breakthrough by Ryan Williams shows that the class NEXP does
not have polynomial size ACC circuits [27]. Thus while ACC is no longer a
frontier open problem in circuit lower bounds, questions like separating NP
from polynomial size ACC circuits are still open.



180 PARIKSHIT GOPALAN

Polynomial representation of OR functions over Zm and set systems with
restricted intersections have recently found applications in the construc-
tions of families of locally decodable codes with constant query complexity
originating in the work of Yekhanin [28] known as matching vector codes
[28,23,10,9]. These codes rely on the constructions of large families of Match-
ing Vectors, which can be constructed using the set systems with restricted
intersections due to Grolmusz [17,18,19] as shown by Efremenko [10] or di-
rectly from OR polynomials [9]. A necessary step towards obtaining tight
bounds on the length of locally decodable codes would be to show such
bounds on matching vector families, which in turn requires resolving the
degree of OR polynomials modulo 6.

1.3. Organization

We present our Ramsey constructions in Section 2. The lower bounds for
prime-power representations are in Section 3, and for prime representations
are in Section 4. In Section 5, we give an alternate construction based on
set intersections that results in exactly the constructions of Frankl-Wilson,
Grolmusz and Alon. We also give improved bounds for set systems with
restricted intersections modulo prime powers. We conclude with some open
problems in Section 6.

1.4. Preliminaries

Let 0 = (0, . . . ,0). Given x ∈ {0,1}n let wt(x) =
∑

ixi denote its Hamming
weight. Given x,y ∈ {0,1}n, x⊕y denotes symmetric difference, x∩y de-
notes the bitwise AND, and d(x,y)=wt(x⊕y) denotes Hamming distance.
Let

(
n
≤d
)

=
∑(n

i

)
for i≤d. Let Sk(X)=

∑
Xi1 · · ·Xik denote the kth elemen-

tary symmetric polynomial. Every multilinear symmetric polynomial can be
written as a linear combination of these polynomials.

We will use Lucas’ Theorem about binomial coefficients modulo p.

Fact 1. [20] Let p be a prime and let

w =
∑
i≥0

wip
i, 0 ≤ wi < p

k =
∑
i≥0

kip
i, 0 ≤ ki < p
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Then (
w

k

)
≡
∏
i

(
wi
ki

)
mod p.

For x∈Z, let the valuation of x denoted vp[x] be the highest power of p
that divides x. Let vp[0]=∞. We have the ultrametric inequality vp[x+y]≥
min(vp[x],vp[y]) and vp[xy]=vp[x]+vp[y].

We say a Ramsey graph G(V,E) is explicit if there is a deterministic
poly(|V|) time algorithm to compute the adjacency matrix and very ex-
plicit if there is a deterministic poly(log |V|) algorithm that computes the
adjacency relation. We briefly describe the known explicit constructions of
Ramsey graphs in chronological order.

• Frankl-Wilson [12]: Take p prime and m= p3. The vertex set consists
of all subsets of [m] of size p2−1. Two vertices S and T are adjacent if

|S ∩T | 6≡ −1 mod p. One can show that max(α(G),ω(G))≤ c
√
n logn for

some constant c using well-known results from extremal set theory [12,5].
• Grolmusz [17,18,19]: The main step is to construct a set system F on

[n] of size nω(1) so that |S|≡0 mod 6 but |S∩T | 6≡0 mod 6. The vertices
of the graph G are sets of F and S,T are adjacent if |S∩T | is odd. Again

we get max(α(G),ω(G))≤c
√
n logn using results from extremal set theory.

• Alon [2]: Take p < q to be nearly equal primes and m = p3. The ver-
tex set consists of all subsets of [m] of size pq− 1. Two vertices S and
T are adjacent if |S ∩ T | 6≡ −1 mod p. To bound α(G) and ω(G), we
construct representations of G over Zp and G over Zq. Again we get

max(α(G),ω(G))≤c
√
n logn.

• Barak [3]: Barak gives a product based construction (discovered inde-
pendently by Pudlak and Rodl) where we first explicitly search for a good
Ramsey graph in a small sample space and then use the Abbot product
to get a larger graph. This gives |V |=2n and max(α(G),ω(G))≤2ε

√
n logn

for any ε> 0. A similar product based construction, but with worse pa-
rameters is given by Naor [22].
• Barak-Rao-Shaltiel-Wigderson [8]: In a recent breakthrough, Barak

et al. give a construction that achieves max(α(G),ω(G))≤2n
o(1)

. In fact
they solve a more general problem, which is to construct bipartite Ram-
sey graphs. Their construction is rather intricate and makes heavy use of
machinery developed for extracting randomness from independent ran-
dom sources.

Except Barak’s construction, all other constructions are very explicit.
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2. OR polynomials and Ramsey graphs

In this section, we prove the correctness of the construction described in the
introduction (which we restate formally below). While the graphs obtained
are not quite optimal, the construction is simple and best illustrates the
connection between OR representations and Ramsey graphs.

Construction 1. Graph G(V,E) from OR polynomials.

− Let V (G)={0,1}n.
− If P (x⊕y)≡0, add an edge (x,y).

If graph G has a representation over a field F as in Definition 3, it is
easy to show that ω(G)≤ dimF(F) which is the dimension of the F-vector
space spanned by F [2]. For representations over Zpa , we show that ω(G)≤
dimQ(F) which is the dimension of the Q-vector space spanned by F . The
proof is by a valuation based argument similar to one used by Babai et al. [6].

Lemma 2. If G(V,E) has a polynomial representation over Zpa , then
ω(G)≤dimQ(F).

Proof. Let K ⊆ V be a clique. We claim that the polynomials Pv(X) for
v∈K are linearly independent over Q. Assume for contradiction that∑

v∈K
λvPv(X) = 0

We may assume that λv ∈Z by clearing denominators, and that p does not
divide λu for some u∈K by removing common factors. Rearranging terms,
we have

λuPu(X) = −
∑

v∈K,v 6=u
λvPv(X).

Substituting X=xu, we get

λuPu(xu) = −
∑

v∈K,v 6=u
λvPv(xu).

Since Pu(xu) 6≡ 0 mod pa and vp[λu] = 0, we have vp[λuPu(xu)]≤ a−1. But
for all v 6=u∈K the edge (u,v) is present, hence Pv(xu)≡0 mod pa. So the
RHS is divisible by pa, which is a contradiction.

Theorem 3. Given a degree d OR representation, graph G has 2n vertices
and

max(α(G), ω(G)) ≤
(
n

≤ d

)
.
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Proof. Assume that we have a prime representation. We give a polynomial
representation of G over Zp.

For each vertex v∈{0,1}n, let

Yi =

{
1−Xi if vi = 1

Xi if vi = 0

Define Pv(X1, . . . ,Xn) to be the polynomial obtained by multi-linearizing
P (Y1, . . . ,Yn) (i.e. setting Xd

i =Xi). Note that for u∈{0,1}n,

Pv(u) = P (v ⊕ u).

Hence

Pv(v) = P (0) 6≡ 0 mod p.

On the other hand, from our construction, if (u,v) ∈ E then P (v⊕u) 6≡
0 mod p. Hence

Pv(u) = P (v ⊕ u) 6≡ 0 mod p.

Thus we get a polynomial representation of G over Zp. Since the Pv(X)s
are all multilinear polynomials of degree at most d in n variables, they lie
in a vector space of dimension

(
n
≤d
)
. This shows that ω(G)≤

(
n
≤d
)
. Similarly,

if (u,v) is not an edge then P (v⊕u) 6≡0 mod p, hence Q(v⊕u)≡0 mod q.
Using this we construct a representation of G over Zq and bound α(G).

For prime-power representations of OR, we can represent G and G over
Zpa by the same argument.

One can construct explicit Ramsey graphs by plugging in various OR rep-
resentations described below; all of which give d=O(

√
n) using symmetric

polynomials. This gives a bound of c
√
n logn

1 for some constant c1 on the clique
size. In fact the constructions below are very explicit, since given vertices
x,y∈{0,1}n, the color of the edge (x,y) can be computed in time O(n).

1) Alon [2]: Let p<q be primes and let n=pq−1. Define P (X)∈Zp[X] and
Q(X)∈Zq[X] as

P (X) = 1−
(∑

Xi

)p−1
Q(X) = 1−

(∑
Xi

)q−1
(1)

For x 6=0, since 1≤
∑

iwt(x)≤pq−1, by the CRT wt(x) 6≡0 mod p or wt(x) 6≡
0 mod q. By Fermat’s Theorem, in the former case P (x)≡ 0 mod p, in the
latter Q(x)≡0 mod q. Taking p,q nearly equal gives degree d=(1+o(1))

√
n.
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2) BBR [4]: Let n=2k3`−1. Define P (X)∈Z2[X] and Q(X)∈Z3[X] as

P (X) =

(∑
iXi + 2k − 1

2k − 1

)
,

Q(X) =

(∑
iXi + 3` − 1

3` − 1

)
(2)

Since
(∑

i xi
k

)
=Sk(x) for x∈{0,1}n, P (X) and Q(X) in fact have coefficients

from Z2 and Z3. For x 6=0, 1≤
∑

iwt(x)≤2k3`−1. Lucas’ theorem implies
that if wt(x) 6≡0 mod 2k then P (x)≡0 mod 2, and if wt(x) 6≡0 mod 3` then
Q(x)≡0 mod 3. We can choose k,` s.t. d=(1+ε)

√
n for any ε>0 [21].

Both representations above are prime representations, we now construct
prime power representations. For ease of exposition, we restate Definition 4
of prime-power representations in terms of rational polynomials; we omit
the simple proof of equivalence.

Definition 6. Polynomials P (X),Q(X)∈Q[X] represent the OR function
on {0,1}n if

P (0, . . . , 0) ≡ 1 mod p and Q(0, . . . , 0) ≡ 1 mod p

and for x∈{0,1}n \(0, . . . ,0)

P (x) ≡ 0 mod p or Q(x) ≡ 0 mod p

for a prime p. The degree of the representation is d=max(deg(P ),deg(Q)).

Note that in general P (x) could be rational. When we say P (x)≡0/1 mod
p, we mean P (x) is an integer satisfying the condition. However, if x 6= 0
and Q(x)≡0 mod p, then P (x) need not be an integer and vice versa.

3) Frankl-Wilson [12]: Take p prime and n=p2−1. Define P (X),Q(X)∈
Q[X] as

P (X) =

p−1∏
j=1

(∑
i

Xi − j

)

Q(X) =

p−1∏
j=1

(∑
iXi

p
− j
)

(3)

For a non-zero vector x ∈ {0,1}n we have 1 ≤ wt(x) ≤ p2− 1. If wt(x) 6≡
0 mod p then P (x) ≡ 0 mod p. If wt(x) ≡ 0 mod p, then 1 ≤ wt(x)

p ≤ p− 1

hence Q(x)≡0 mod p. The degree is d=p−1<
√
n.
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4) We construct representations with the prime fixed and n varying, anal-
ogous to [4]. Let n=22k−1. Define P (X),Q(X)∈Q[X] as

P (X) =

(∑
iXi + 2k − 1

2k − 1

)

Q(X) =

(∑
iXi

2k
+ 2k − 1

2k − 1

)
(4)

The proof of correctness is through Lucas’ theorem. If wt(x) 6≡ 0 mod 2k

then P (x)≡0. If x 6=0 but wt(x)≡0 mod 2k then Q(x)≡0.

Plugging any of these polynomials into construction 1 gives the following
type of graph: Add (x,y) to E if d(x,y) 6≡0 mod ` where ` is either a prime
or a prime power close to

√
n.

For t-color Ramsey graphs, we define OR representations with t polyno-
mials P1(X), . . . ,Pt(X) such that the union of their zero sets if {0,1}n\{0}.
We can extend constructions in Equations 1, 2 by taking t distinct primes.
To extend the construction of Equation 3, let n=pt−1. For 1≤`≤ t define

(5) P`(X) =

p−1∏
j=1

(∑
iXi

p`
− i
)

We can similarly extend Equation 4, we omit the details.

3. Lower bounds for prime-power representations

In this section we prove a lower bound for prime-power representations by
symmetric polynomials.

Theorem 4. Let P (X)∈Zpa [X] and Q(X)∈Zpb [X] be symmetric polyno-
mials that represent the OR function on n variables. Then (deg(P ) + 1) ·
(deg(Q)+1)≥ n

2 .

We restate Theorem 4 below in terms of integer polynomials.

Proposition 5. Let P (X),Q(X) ∈ Z[X] be univariate polynomials such
that for x∈{1, . . . ,n},

(6) vp[P (0)] < vp[P (x)] or vp[Q(0)] < vp[Q(x)]

Then (deg(P )+1) ·(deg(Q)+1)≥ n
2 .
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The two statements are equivalent because any multivariate symmetric
polynomial on 0-1 inputs is essentially a univariate polynomial in the weight
of the input. The formal proof is standard and is omitted.

The next two Lemmas (6 and 7) develop tools to show degree bounds for
such polynomials.

Definition 7. A sequence S = (α1, . . . ,αd) of integers is called a greedy
sequence modulo p if for all j,∑

i<j

vp[αj − αi] ≤
∑
i<j

vp[αk − αi] for k 6= j.

When p is clear from the context, we will refer to S simply as a greedy
sequence. Note also that for j ≤ d, the α which minimizes

∑
i<j vp[α−αi]

cannot be one of α1, . . . ,αd−1 since these make the LHS ∞. An example of
a greedy sequence is when (α1, . . . ,αd) are consecutive integers.

Let us define N1(X) = 1 and Nj(X) =
∏
i<j(X − αi) for j > 1. The

definition of a greedy sequence can be restated as vp[Nj(αj)]≤ vp[Nj(αk)]
for k 6=j. Given any set S, we can order it elements greedily as follows to get
a greedy sequence: we choose α1 arbitrarily; having chosen (α1, . . . ,αj−1) we
choose αj∈S to be the element that minimizes vp[Nj(αj)].

Lemma 6. Let S= (α1, . . . ,αd) be a greedy sequence. Let P (X)∈Z[X] be
such that

vp[P (αd)] < vp[P (αi)] for i ≤ d− 1

Then deg(P )≥d−1.

Proof. The proof is by induction on d. We will show the converse, namely
that if deg(P )≤d−2.

vp[P (αd)] ≥ min
i≤d−1

vp[P (αi)]

The base case d=2 is trivial, in this case P is constant so it is clear that
vp[P (α2)] = vp[P (α1)]. Assume the property holds for greedy sequences of
length d−1. Given a polynomial P (X) of degree d−2, since Nd−1(X) is a
monic polynomial of degree d− 2, we write P (X) =Q(X) + cd−1Nd−1(X),
where Q(X) is a polynomial of degree d−3. Substituting X=αd,

P (αd) = Q(αd) + cd−1Nd−1(αd)

hence by the ultrametric inequality

(7) vp[P (αd)] ≥ min{vp[Q(αd)], vp[cd−1Nd−1(αd)]}
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To lower bound vp[Q(αd)], note that the sequence (α1, . . . ,αd−2,αd) of
length d− 1 obtained by deleting αd−1 is also greedy. Hence applying the
inductive hypothesis to Q(αd), we get

(8) vp[Q(αd)] ≥ min
i≤d−2

vp[Q(αi)] = min
i≤d−2

vp[P (αi)]

The last equality follows since Nd−1(αi)=0 for i≤d−2, hence Q(αi)=P (αi).
We now lower bound vp[cd−1Nd−1(αd)]. Using the greedy property of the
sequence (α1, . . . ,αd),

vp[cd−1Nd−1(αd)] ≥ vp[cd−1Nd−1(αd−1)]

cd−1Nd−1(αd−1) = P (αd−1)−Q(αd−1)

Hence we have

(9) vp[cd−1Nd−1(αd−1)] ≥ min{vp[P (αd−1)], vp[Q(αd−1)]}

Since (α1, . . . ,αd−1) is a greedy sequence and Q has degree d−3, we get by
induction that

(10) vp[Q(αd−1)] ≥ min
i≤d−2

vp[Q(αi)] = min
i≤d−2

vp[P (αi)]

Combining Equations 7, 8, 9, 10 gives the desired result.

Recall that a sequence of consecutive integers is a greedy sequence. Thus
the lemma above tells us that while a degree d polynomial over Zpa can have
several zeroes, it can have at most d consecutive zeroes. The intuition for
this Lemma is from an algorithm for polynomial interpolation over Zpa by
the author [14]. Given a set S, and values f(x) for x∈S of some polynomial
in Zpa [X], the algorithm will output the smallest degree polynomial P (X)
that fits the data, provided it sees the elements of S in the above greedy
order. If the polynomial is 0 on every element but the last, the algorithm is
forced to output a polynomial of degree d−1.

Next we define the notion of a greedy array modulo p which we use to
construct long greedy sequences. Like with greedy sequences, we will usually
refer to them simply as greedy arrays. Given a t-dimensional matrix A of
dimension d0 × ·· · × dt−1 and i ∈ [d0]× ·· · × [dt−1] we use A[i] to denote
A[i0, . . . , it−1].

Definition 8. A t-dimensional matrix of distinct integers A is called a
greedy array if

(11) vp
[
A[i]−A[j]

]
= min{a|ia 6= ja}
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We define an ordering of the array indices, which is essentially the reverse
lexicographic (revlex) ordering.

Definition 9. Given two distinct t-dimensional integer vectors i and j, let
`=max{a|ia 6=ja}. Then i< j if i`<j`.

Note that for a greedy array, the valuation should equal the smallest
index where i and j differ. However, to order elements, we look at the largest
index where they differ. For example, consider the p× ·· ·× p array where
A[i0, . . . , it−1]= i0+i1p · · · it−1pt−1 and 0≤ ij≤p−1. Thus the array contains
i ∈ {0, . . . ,pt− 1} with numbers indexed by their base-p expansion. Since
vp[i−j] depends on the smallest digit where i and j differ, this is a greedy
array. The ordering defined above is the usual ordering of integers, it depends
on the largest digit where the expansions differ.

Lemma 7. Ordering elements of a greedy array gives a greedy sequence.

Proof. We want to show that for k 6= j

(12)
∑
i<j

vp
[
A[j]−A[i]

]
≤
∑
i<j

vp
[
A[k]−A[i]

]
For 0≤a≤ t−1, we define the set

Sa = {i|ia < ja, ia+1 = ja+1, . . . , it−1 = jt−1}
The indices i0, . . . , ia−1 are unrestricted. The Sa’s are disjoint and they par-
tition the set {i|i< j}. We show that for every a, and for k 6= j

(13)
∑
i∈Sa

vp
[
A[j]−A[i]

]
≤
∑
i∈Sa

vp
[
A[k]−A[i]

]
Equation 12 will follow by summing over all a. Hence consider a fixed a.
Note that if i∈Sa then 0≤ vp

[
A[j]−A[i]

]
≤a. Accordingly we partition Sa

into J(0), . . . ,J(a) as follows: for 0≤`≤a−1,

J(`) = {i ∈ Sa|i0 = j0, . . . , i`−1 = j`−1, i` 6= j`}
= {i ∈ Sa|vp

[
A[j]−A[i]

]
= `}

J(a) = {i ∈ Sa|i0 = j0, . . . , ia−1 = ja−1}

For i ∈ J(a) we have vp
[
A[j]−A[i]

]
= a since for all i ∈ Sa, ia < ja so

ia 6= ja. Now given k 6= i let us define the sets K(0), . . . ,K(a) as follows. For
0≤`≤a−1,

K(`) = {i ∈ Sa|i0 = k0, . . . , i`−1 = k`−1, i` 6= k`}
= {i ∈ Sa|vp

[
A[k]−A[i]

]
= `}

K(a) = {i ∈ Sa|i0 = k0, . . . , ia−1 = ka−1}
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Unlike for J(a), for i ∈ K(a) it could be that ia = ka, so we have
vp
[
A[k]−A[i]

]
≥ a. Since the indices i0, . . . , ia−1 are unrestricted in Sa, we

have |J(`)|= |K(`)| for 0≤`≤a. We now prove Equation 13.∑
i∈Sa

vp
[
A[j]−A[i]

]
=
∑

0≤`≤a

∑
i∈J(`)

vp
[
A[j]−A[i]

]
=
∑

0≤`≤a
` · |J(`)|∑

i∈Sa

vp
[
A[k]−A[i]

]
=
∑

0≤`≤a

∑
i∈K(`)

vp
[
A[k]−A[i]

]
≥
∑

0≤`≤a
` · |K(`)|

≥
∑

0≤`≤a
` · |J(`)|

Hence the claim follows.

A two-dimensional greedy array is a matrix G of integers such that ele-
ments in the same row are congruent mod p, while elements in distinct rows
are not congruent mod p. Lemma 7 says that ordering the elements of G
column-wise gives a greedy sequence. This concludes the algebraic part of
the proof, we now proceed to the combinatorial part.

Before we start the proof, we give a sketch for the case when n=p2−1,
which corresponds to the Frankl-Wilson construction (see Figure 1).

Define the sets

A = {0} ∪ {x ∈ {1, . . . , p2 − 1} | vp[P (0)] < vp[P (x)]}

B = {0} ∪ {x ∈ {1, . . . , p2 − 1} | vp[P (0)] ≥ vp[P (x)]}

Note that vp[Q(0)]<vp[Q(x)] for every x 6=0 in B. Further A and B partition
the set {1, . . . ,p2−1} and they intersect only at 0. We will show that A and
B contain large greedy arrays.

1. Arrange {0, . . . ,p2−1} in p×p grid, each row corresponding to a congruence
class mod p.

2. Within each row, place elements lying in A before those in B. Since 0
lies in A∩B, place all other elements in A which are 0 mod p before 0.

3. Sort the rows according to how many elements from A they contain.

This reordering is illustrated in Figure 1, the dark line separates A and B.
It is clear that A and B contain greedy arrays G of size k0×k1 and H of size



190 PARIKSHIT GOPALAN

Figure 1. Lower bound for p2−1 and the Frankl-Wilson construction

`0×`1, respectively (indicated by shaded regions) so that k0+`0=k1+`1=p+1.
From this it follows that |G||H|≥p2. Also, we can ensure that 0 is the last
element of these arrays in the column-wise ordering. So vp[P (x)] is minimized
at the last element in G, hence by Lemma 7 deg(P ) ≥ |G| − 1. Similarly
deg(Q)≥|H|−1, which proves the desired bound. Also, |G||H| is minimized
when A={x|x≡0 mod p}, and B= 0∪{x|x 6≡0 mod p} (or vice versa), the
corresponding polynomials give exactly the Frankl-Wilson construction.

The proof for general n is a high dimensional extension of this argument.
The next lemma (Lemma 8) says that any disjoint partition of {0, . . . ,n−1}
into A,B will result in one of the partitions having a greedy array of size√
n. In fact we prove something stronger, we can choose the dimensions of

the array to be any solution to Equation 14.

Lemma 8. Let 1 ≤ n′ ≤ p. Let A,B be disjoint sets of integers such that
A∪B={0, . . . ,n′pt−1−1}. Given any positive integers k0, . . . ,kt−1, `0, . . . , `t−1
satisfying

For i ≤ t− 2 ki + `i = p+ 1(14)

kt−1 + `t−1 = n′ + 1

either A contains a greedy array of size k0×·· ·×kt−1 or B contains a greedy
array of size `0×·· ·×`t−1.

Proof. The proof is by induction on t (the dimension of the greedy arrays).
When t=1, we have disjoint sets A,B so that A∪B={0, . . . ,n′−1} hence

|A|+ |B|=n′. Since n′−1<p any ordering of A and B gives greedy arrays
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of size |A| and |B|, respectively. Given k0, `0 such that k0 + `0 = n′+ 1, if
|A|≤k0−1, then |B|≥n′+1−k0=`0.

Assume that the claim is true up to t−1. For 0≤ i≤p−1, we define the
following sets

A(i) = {x ∈ A|x ≡ i mod p}Â(i) = {(x− i)/p | x ∈ A(i)}

We define sets B(i) and B̂(i) similarly. Note that for each i, Â(i) and B̂(i) are

disjoint, further Â(i)∪B̂(i)={0, . . . ,n′pt−2−1}. So the induction hypothesis

applied to Â(i) and B̂(i) with k1, . . . ,kt−1, `1, . . . , `t−1 implies that either A
contains a greedy array of size k1×·· ·×kt−1 or B contains a greedy array
of size `1×·· ·×`t−1. We define the following sets

S = {i|Â(i) has a greedy array Ĝi of size k1 × · · · × kt−1}
T = {i|B̂(i) has a greedy array Ĥi of size `1 × · · · × `t−1}

Since S,T are disjoint and |S|+ |T |= p we have either |S| ≥ k0 or |T | ≥ `0.
Assume |S|≥k0. We define a greedy array G of size k0×·· ·×kt−1 as follows.
Choose S′ ⊂ S of size k0. For each i ∈ S′, the ith row of G contains the
pre-image Gi of Ĝi in A(i) of dimension k1×·· ·×kt−1.

We need to verify that G satisfies vp(G[i]−G[j])=min{a|ia 6=ja}. Given
i and j, if i0 6=j0, then G[i] 6≡G[j] mod p so the condition holds. Now assume
that i0=j0, so that i=(i0, i

′), j=(i0, j
′). Since G[i] and G[j] are in the same

row, G[i]≡G[j]≡c mod p for 0≤c≤p−1. So

G[i]−G[j] = Gc[i
′]−Gc[j′]

= (pĜc[i
′] + c)− (pĜc[j

′] + c)

= p(Ĝc[i
′]− Ĝc[j′])

⇒ vp
[
G[i]−G[j]

]
= 1 + vp

[
Gc[i

′]−Gc[j′]
]

= 1 + min{a|i′a 6= j′a}

Note that min{a|ia 6= ia}= 1+min{a|i′a 6= i′a}. Hence G is a greedy array of
the right dimension.

The next Lemma is the key step in the combinatorial argument. Now we
consider sets A and B which intersect only at 0, and we want to produce
greedy arrays that end at 0 by our ordering. We show that such arrays exist
whose dimensions satisfy Equation 14.

Lemma 9. Partition Lemma: Let 1≤n′≤p. Let A,B be sets of integers
such that

A ∪B = {0, . . . , n′pt−1 − 1}, A ∩B = {0}
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Then there exist positive integers k0, . . . ,kt−1, `0, . . . , `t−1 satisfying Equa-
tion 14, so that A contains a greedy array G of size k0×·· ·×kt−1 and B
contains a greedy array H of size `0×·· ·×`t−1, and both G and H contain
0 as the last element.

Proof. The proof is by induction on t.
When t=1, we have sets A,B so that A∪B={0, . . . ,n′−1} and A∩B={0}

so |A|+|B|=n′+1. We take k0= |A|, `0= |B|. Define G to be an ordering of
A where 0 comes last, similarly for H.

Assume that the claim holds up to t−1. For 0≤ i≤p−1, we define the
sets A(i), Â(i),B(i), B̂(i) as before. Note that

Â(0) ∪ B̂(0) = {0, . . . , n′pt−2 − 1}
Â(0) ∩ B̂(0) = {0}

By induction, there exist k1, . . . ,kt−1 and `1, . . . , `t−1 as above so that Â(0)

contains a greedy array of size k1× ·· ·× kt−1 and B̂(0) contains a greedy
array of size `1×·· ·×`t−1. For 1≤ i≤p−1 we have

Â(i) ∪ B̂(i) = {0, . . . , n′pt−2 − 1}
Â(i) ∩ B̂(i) = φ

Hence applying Lemma 8, either Â(i) contains an array of size k1×·· ·×kt−1
or B̂(0) contains a greedy array of size `1×·· ·× `t−1. Again we define the
sets

S = {i|Â(i) has a greedy array Ĝi of size k1 × · · · × kt−1}
T = {i|B̂(i) has a greedy array Ĥi of size `1 × · · · × `t−1}

Let k0 = |S|, `0 = |T |. Since S ∩T = {0} and S ∪T = {0, . . . ,p− 1} we have
k0 + `0 = p+ 1. Order S and T so that 0 is the last element. We define a
greedy array G of size k0×·· ·×kt−1 as follows. For each i∈S, the ith row
of G contains the pre-image Gi of Ĝi in A(i) of dimension k1×·· ·× kt−1.
Similarly we define H where the ith row contains the pre-image Hi of Ĥi in
B(i). The proof that these are greedy arrays follows Lemma 8. They both
contain 0 as the last element by induction.

We now complete the proof of Theorem 4.

Proof of Theorem 4 Assume that pt−1≤n<pt. We can choose n′ so that
1≤n′≤p and n/2≤n′pt−1−1≤n. Define the sets

A = {0} ∪ {x | 1 ≤ x ≤ n′pt−1 − 1, vp[P (0)] < vp[P (x)]}
B = {0} ∪ {x | 1 ≤ x ≤ n′pt−1 − 1, vp[P (0)] ≥ vp[P (x)]}
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Applying Lemma 9 implies that A and B contain greedy arrays G and
H of size k0 × ·· · × kt−1 and `0 × ·· · × `t−1, respectively where ki and `i
satisfy Equation 14. Applying Lemma 7, by ordering G we get a greedy
sequence {α1, . . . ,αd−1,0} in A of length d=

∏
j kj . By the definition of set

A, vp[P (0)]<vp[P (αi)] for i≤d. So by Lemma 6 deg(P )≥
∏
j kj−1.

Similarly we get a greedy sequence of length
∏
j `j in B ending in 0. Note

that by Equation 6, x ∈ B and x 6= 0 implies vp[Q(0)] < vp[Q(x)]. So by
Lemma 6, deg(Q) ≥

∏
j `j − 1. By Equation 14, kj`j ≥ p for j ≤ t− 2 and

kt−1`t−1≥n′. Hence

(deg(P ) + 1)(deg(Q) + 1) ≥
∏
j

kj`j

≥ n′pt−1 > n/2.

For the Frankl-Wilson construction where n=p2−1, we get

(deg(P ) + 1)(deg(Q) + 1) ≥ p2

which is tight.

4. Lower bounds for prime representations

In this section we prove a lower bound for prime representations using sym-
metric polynomials.

Theorem 10. Let P (X)∈Zp[X] and Q(X)∈Zq[X] be symmetric polyno-
mials that represent the OR function on n variables. Then deg(P )·deg(Q)≥
n/10.

Note that this requires deg(P ),deg(Q)≥ 1 but if deg(P ) = 0 meaning P
is a constant function, then it is easy to show that deg(Q)=n, so this case
is not interesting. The hard case of this theorem is when p and q are fast-
growing functions of n, as in Alon’s construction. To handle this case, we
prove a partition lemma (Lemma 11) which says that taking p and q large
does not help.

Definition 10. Let p < q be distinct primes, let n < pq. Let A ⊆ Z∗p and
B⊆Z∗q . We say that x is covered by A if x mod p∈A, and that it is covered
by B if x mod q ∈ B. We say A and B cover [n] if every x ∈ {1, . . . ,n} is
covered by A or B.
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If n< pq, we can cover [n] by taking A=Z∗p and B=Z∗q . Given A⊆Z∗p
and B⊆Z∗q , the number of elements in {1, . . . ,pq} that are covered by A or
B is |A|q+|B|p−|A||B| which can be much larger than |A||B|. The partition
lemma states that to cover the first n integers however, |A||B| needs to be
Ω(n).

Figure 2. Proof of Proposition 12

Lemma 11. Partition Lemma: If A ⊆ Z∗p and B ⊆ Z∗q cover [n], then
(|A|+1) ·(|B|+1)> n

2 .

Using |A|+1 rather than |A| in the product lets us ignore the case when
|A|=0. Let us sketch the idea behind the proof of the Partition Lemma. Let
n=nqq. Assume that to begin with, we have B=Z∗q and A={q,2q, . . . ,nqq}.
It is clear that A and B cover n, however, (|A|+1)(|B|+1)>n. One could
try and reduce |B| by removing elements from it. We want to show that this
results in an increase in |A|. Removing i∈Z∗q from B results in the numbers
{i, i+ q, . . . , i+ (nq − 1)q} being uncovered. Call this set S(i). The various
elements of S(i) are less than pq and they are congruent mod q, hence the
CRT implies they cannot also be congruent mod p. But the problem is for
i 6= j,there could be considerable overlap between the residues of S(i) and
S(j) mod p. Hence, it is not clear that removing many elements from B does
actually cause |A| to increase. However, by suitably reordering the elements
of Zp, we show that every element removed from B causes the size of A to
increase by at least 1. In fact Figure 2 shows that |A| could increase by just
1. This is sufficient to prove the Partition Lemma.

Set np =
⌊
n
p

⌋
and nq =

⌊
n
q

⌋
. Given set S of integers, define S mod p⊆Zp

to be the set {x mod p|x∈S}.

Proposition 12. Let n ≥ q. If A and B cover [n] and |B| = q − ` then

|A|≥
⌊
n
q

⌋
+`−1.
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Proof. Note that since n≥ q, nq ≥ 1. Let B denote the complement of B
in Zq, so 0 ∈ B. For each i ∈ B, take S(i) to be the first nq numbers in
{1, . . . ,n} congruent to i mod p. In other words, S(0) = {q,2q, . . . ,nqq} and
for i 6=0,S(i)={i, i+q, . . . , i+(nq−1)q}. Let

S =
⋃
i∈B

S(i)

If x∈S, then x is not covered by B so it must be covered by A. We want to
lower bound the size of S mod p.

Let us permute the set Zp as {0, q,2q, . . . ,(p−1)q} (this is a permutation
since (q,p) = 1). It sends j mod p to cjq which is the multiple of q such
that cjq≡ j mod p. This map sends S(0) mod p to {q, . . . ,nqq} and the set
S(i) mod p to the interval {c(i)q,(c(i)+1)q, . . . ,(c(i)+nq−1)q} of length nq for
i 6= 0. None of these intervals contain 0, since that would give x∈{1, . . . ,n}
such that x≡ i mod q and x≡0 mod p. Such an x is not covered by A or B.
Each interval S(i) mod p begins at a distinct point c(i). Sorting the intervals
by their starting points, it follows that the union of ` such intervals of length
nq contains at least nq+`−1 elements of Z∗p.

Figure 2 illustrates this argument for p = 7, q = 11,n = 44. Here B =
Z11 \{0,1}.

Proof of Lemma 11 We consider the cases n < p, p < n ≤ q and q ≤ n
separately. The non-trivial case is when q≤n.

1. Let n≤ p< q. Numbers {1, . . . ,n} lie in distinct congruence classes mod
p and q. Hence

|A|+ |B| ≥ n⇒ (|A|+ 1) · (|B|+ 1) > n

2. Let p < n≤ q. The numbers {1, . . . ,p} lie in distinct congruence classes
modulo p and q. Hence |A|+|B|≥p and (|A|+1)·(|B|+1)>p. This proves
the claim if n≤2p so let n>2p.
Let |A|=p−k for 1≤k<p. There are np numbers ≤n in each congruence
class mod p. Thus npk numbers are not covered by A and have to be
covered by B. Since n≤q, they lie in distinct congruence classes mod q.
Hence |B|≥npk. Using the fact that n≥2p hence pnp≥n/2 we get

(|A|+ 1) · (|B|+ 1) > (p− k + 1)knp ≥ pnp > n/2

3. Let n>q. By Prop. 12, if |B|=q−`, then |A|≥nq+`−1. Since |A|≤p−1,
we get 1≤`≤p−nq. Hence for 1≤`≤p−nq we have

(|A|+ 1)(|B|+ 1) ≥ (q − `+ 1) (nq + `)
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We will show that this is lower bounded by n/2. By differentiating, this
bound is minimized at one of the extreme values of `, so it suffices to
check the bound is at least n

2 for those values. When `=1,

(q − `+ 1)

(⌊
n

q

⌋
+ `

)
= q

(⌊
n

q

⌋
+ 1

)
> n

When `=p−
⌊
n
q

⌋
(q − `+ 1)

(⌊
n

q

⌋
+ `

)
=

(
q − p+

⌊
n

q

⌋
+ 1

)
p

≥
(
q − p+

n

q

)
p

= (q − p)p+
np

q

One of (q− p)p and (np)/q is at least n/2: If q < 2p, (np)/q > n/2. If
q>2p, then (q−p)p>n/2.

We now proceed to the algebraic step of the proof. Every symmetric
polynomial P (X) ∈ Zp[X] computes a function of the weight wt(x) of its
input, which we denote as P : [n]→Zp by abuse of notation. Henceforth, we
will use these two views of P (as a symmetric polynomial and as a function
of the weight) interchangeably.

Let wt(x)=
∑

i≤`wip
i. By interpolation, every function P : [n]→Zp can

be expressed as a multivariate polynomial P̄ (w0, . . . ,w`) where the degree in
each wi (denoted deg(wi)) is at most p−1.

It was shown in [7] that the degree of the polynomial P is related to the
most significant digit wj of the base-p expansion on which P̄ depends (where
P̄ depends on wj if deg(wj)≥1).

Proposition 13. [7] The functions P : [n]→Zp that can be computed by
symmetric polynomials P (X) ∈ Zp[X] where deg(P ) ≤ pj+1 are the func-
tions which can be computed by polynomials P̄ (w0, . . . ,wj). Equivalently,
these are functions which depend only on the first j+1 digits of the base-p
expansion of w.

It follows that if j is the largest index so that deg(wj) ≥ 1 in P , then
pj≤deg(P )<pj+1. This gives a bound with a factor of p.

By defining an appropriate weighted degree of P̄ , we can make the cor-
respondence exact.
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Definition 11. Given P̄ (w0, . . . ,w`)∈Zp[w0, . . . ,w`], the weighted degree of

a monomial
∏
iw

di
i with di≤p−1 is defined as wdeg(

∏
iw

di
i )=

∑
i dip

i. The
weighted degree of P̄ denoted wdeg(P̄ ) is the maximum weighted degree
over all monomials in the support of P̄ .

Lemma 14. Given a symmetric polynomial P (X)∈Zp(X) there is a unique
polynomial P̄ (w0, . . . ,w`) that computes the function P : [n]→Zp. Moreover,
we have wdeg(P̄ )=deg(P ).

Proof. Given a symmetric multilinear polynomial P (X)∈Zp[X] of degree
d, write it as

P (X) =
∑
k≤d

ckSk(X).

On at 0-1 input x,Sk(x)=
(w(x)

k

)
. By Lucas’ Theorem(

w(x)

k

)
≡
∏
i≤`

(
wi
ki

)
mod p.

Further the polynomial
∏
i≤`
(
wi
ki

)
has weighted degree

∑
i kip

i = k. Thus

P (X) computes the same function as

P̄ (w0, . . . , w`) =
d∑

k=0

ck
∏
i≤`

(
wi
ki

)
mod p

and wdeg(P̄ )=deg(P ).
To prove the other direction, observe that the monomials

∏
i≤`
(
wi
ki

)
with

ki≤p−1 form a basis for polynomials in Zp[w0, . . . ,w`] with degree at most
p−1 in each wi. Further writing a polynomial in this basis does not change
the degree as defined above. Let k=

∑
i kip

i be the degree of the monomial∏
i

(
wi
ki

)
. Hence given P̄ (w0, . . . ,w`) with degree d, one can write

P̄ (w0, . . . , w`−1) =
d∑

k=0

ck
∏
i<`

(
wi
ki

)
By Lucas’ theorem, this computes the same function as the polynomial
P (X)=

∑
k≤d ckSk(X).

For w ∈ {0, . . . ,n}, let
∑`

i=0uip
i and

∑k
j=0 vjq

j denote the base p and

base q expansions of w, respectively. For P̄ (u0, . . . ,u`) ∈ Zp[u0, . . . ,u`] let
P̄ (w) denote the polynomial P̄ evaluated at the base p expansion of w. For
Q̄(v0, . . . ,vk)∈Zq[v0, . . . ,vk] define Q̄(w) similarly.
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As consequence of Lemma 14, to prove Theorem 10 it suffices to prove
the following Proposition.

Proposition 15. Let P̄ (w) ∈ Zp[u0, . . . ,u`] and Q̄(w) ∈ Zq[v0, . . . ,vk] be
polynomials such that

P̄ (0) ≡ 1 mod p and Q̄(0) ≡ 1 mod q

P̄ (w) ≡ 0 mod p or Q̄(w) ≡ 0 mod qfor 1 ≤ w ≤ n.

Then wdeg(P̄ ) ·wdeg(Q̄)≥ n
10 .

Proof. Let a denote the largest index such that deg(ua) ≥ 1 in P̄ . Then
wdeg(P̄ )≥pa and P̄ (w)= P̄ (u0, . . . ,ua). Similarly let b be the largest index
so that deg(vb) ≥ 1. Then wdeg(Q̄) ≥ qb and Q̄(w) = Q̄(v0, . . . ,vb). Hence
wdeg(P̄ ) ·wdeg(Q̄)≥paqb. This proves the desired bound for n<10paqb. So
we may assume that n≥10paqb.

Also n < pa+1qb+1, since if w = pa+1qb+1 ≤ n, then u0, . . . ,ua = 0 and
v0, . . . ,vb=0 so

P̄ (pa+1qb+1) = P̄ (0, . . . , 0) ≡ 1 mod p,

Q̄(pa+1qb+1) = Q̄(0, . . . , 0) ≡ 1 mod p.

which contradicts the hypothesis. Let n̂=
⌊

n
paqb

⌋
<pq.

Let us consider inputs of the form w= ypaqb where 0≤ y≤ n̂. For such
inputs,

u0 = 0, . . . , ua−1 = 0, ua ≡ yqb mod p,

v0 = 0, . . . , vb−1 = 0, vb ≡ ypa mod q.

Define polynomials R(Y )∈Zp[Y ] as and S(Y )∈Zq[Y ] as

R(Y ) = P̄ (0, . . . , 0, Y qb)

S(Y ) = Q̄(0, . . . , 0, Y pa).

This implies deg(R)=deg(ua)≤p−1 and deg(S)=deg(vb)≤q−1. Note that

R(0) ≡ 1 mod p and S(0) ≡ 1 mod q(15)

R(y) ≡ 0 mod p or S(y) ≡ 0 mod q 1 ≤ y ≤ n̂

We define A⊆Z∗p and B⊆Z∗q to be the 0 sets of R(Y ) and S(Y ), respectively.
By equation 15 A and B cover [n̂]. So by Lemma 11,

(deg(ua) + 1)(deg(vb) + 1) ≥ n̂/2
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Since deg(ua),deg(vb) ≥ 1, this implies that deg(ua) · deg(vb) ≥ n̂/8. Since
wdeg(P̄ )≥padeg(ua) and wdeg(Q̄)≥qbdeg(vb),

deg(P̄ ) · deg(Q̄) ≥ n̂

8
paqb >

1

8

9n

10
>

n

10

The second inequality uses the fact that n≥10paqb hence paqb
⌊

n
paqb

⌋
> 9n

10 .

5. Ramsey graphs based on set intersections

The constructions of Frankl-Wilson, Alon and Grolmusz use a coloring
scheme based on the size of set intersections. In this section we show that
these can be constructed from certain polynomials that are closely related
to OR polynomials. These polynomials are also used by Grolmusz [19] and
Kutin [21] to give simple constructions of set systems with restricted inter-
sections mod 6.

Definition 12. The weight-n function Wn is a partial function defined on
{0,1}m for m≥n as follows

Wn(x) = 0 if wt(x) = n Wn(x) = 1 if wt(x) < n

The function is undefined for wt(x)∈ [n+1, . . . ,m].

Note that Wn on n variables is simply the NAND function. We now define
polynomial representations of Wm. We give an extension of Definition 2, a
similar extension holds for Definition 4

Definition 13. Polynomials P (X)∈Zp[X] and Q(X)∈Zq[X] represent the
Wn function on m variables if

P (x) 6≡ 0 mod p and Q(x) 6≡ 0 mod q if wt(x) = n

P (x) ≡ 0 mod p or Q(x) ≡ 0 mod q if wt(x) < n

The degree of the representation is d=max(deg(P ),deg(Q)).

Assume that P (X1, . . . ,Xm) and Q(X1, . . . ,Xm) representWn with degree

d for some m≥n. Define P̂ (X1, . . . ,Xn) and Q̂(X1, . . . ,Xn) to be polynomial
by substituting 1−Xi for Xi when i ≤ n and setting Xi = 0 for i ≥ n. It
is easy to verify that P̂ and Q̂ represent OR on n variables with degree at
most d. Further if P and Q were symmetric polynomials, then so are P̂ and
Q̂. Thus lower bounds for OR representations imply lower bounds for Wn

representations. In particular our lower bounds for OR representations rule
out representations of Wn with symmetric polynomials of degree o(

√
n).
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Conversely one can construct degree d representations of Wn from degree
d symmetric polynomials representing OR on n variables. We do not know
if a similar statement is true for asymmetric polynomials.

Lemma 16. A degree d representation of OR on n variables using symmet-
ric polynomials gives a degree d representation of Wn on n variables for all
m≥n,

Proof. Let P (X),Q(X) be symmetric polynomials of degree at most d on m
variables that represent OR. Replace each Xi by 1−Xi and multi-linearize.
It is easy to show that the resulting polynomials P ′(X),Q′(X) represent
Wn on n variables. Further, they are symmetric multilinear polynomials of
degree d, hence we can write them as

P ′(X1, . . . , Xn) =
∑
i≤d

aiSi(X1, . . . , Xn)

Q′(X1, . . . , Xn) =
∑
i≤d

biSi(X1, . . . , Xn)

We obtain new polynomials P ′′ and Q′′ by replacing Si(X1, . . . ,Xn) by
Si(X1, . . . ,Xm).

P ′′(X1, . . . , Xm) =
∑
i≤d

aiSi(X1, . . . , Xm)

Q′′(X1, . . . , Xm) =
∑
i≤d

biSi(X1, . . . , Xm)

Since the value of a symmetric function on a 0,1-input depends only on
the weight of the input, one can show that P ′′ and Q′′ represent Wn on m
variables.

We can use the O(
√
n) OR representations to construct representations of

Wn. We give a construction of explicit Ramsey graphs from representations
of Wn.

Construction 2. Ramsey Graph G(V,E) from representations of

Wn.

− V (G) consists of vectors x∈{0,1}m of weight n.
− If P (x∩y)≡0, add (x,y) to E(G).

Theorem 17. Given a degree d representation of the weight-n function on
{0,1}m, the graph G has

(
m
n

)
vertices and α(G),ω(G)≤

(
m
≤d
)
.
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Proof. Assume we have prime representation of Wn. We associate a poly-
nomial Pv(X) with each vertex v so that Pv(u) = P (v ∩ u). Given v =
(v1, . . . ,vm), let Yi=0 if vi=0 and Yi=Xi if vi=1. Set Pv(X)=P (Y1, . . . ,Ym)
and multi-linearize. Using an argument like in Theorem 3, we can show that
this gives a polynomial representation of G over Zp. Since the Pv(X)s are
multilinear polynomials of degree d, we get ω(G)≤

(
m
≤d
)
. Similarly we bound

α(G) by representing (G) over Zq.
For prime-power representations of OR, we can represent G and G over

Zpa and get a similar bound.

The OR representation of Equation 1 gives the following construction
due to Alon [2]. Let n=pq−1,m=n2. The vertices are all subsets of [m] of
size n. Add (x,y) to E(G) if |x∩y| 6≡−1 mod p.

The OR representation of Equation 3 gives the Frankl-Wilson construc-
tion: Let n=p2−1,m=n2. The vertices are all subsets of [m] of size n. Add
edge (x,y) to E(G) if |x∩y| 6≡−1 mod p. This construction can be extended
to t≥2 colors using the polynomials constructed in Equation 5.

Construction 3. Extending the Frankl-Wilson construction to

t colors.

− Take n=pt−1,m=pt+1. Vertices are all n subsets of m.

− Edges are colored {0, . . . , t − 1}. Edge (x,y) is given color

vp(1+ |x∩y|).

The OR representation of Equation 2 gives the following graph G(V,E).
Let n= 2k3`−1,m= n2. The vertices are all subsets of [m] of size n. Add
(x,y) to E(G) if |x∩y| 6≡−1 mod 2k. In fact the graph obtained is the same
as Grolmusz. To show this, we first present his construction, following the
simplified exposition of Grolmusz himself [19] and Kutin [21].
1) Let n=2k3`−1. The BBR polynomials give the following representation
of Wn.

P (X) =

(∑
Xi

2k − 1

)
, Q(X) =

(∑
Xi

3` − 1

)
Define R(X) ∈ Z6[X] to be the polynomial obtained by combining these
polynomials using the CRT. It follows that R(x)≡1 mod 6 when wt(x)=n
and R(x) is divisible by 2 or 3 when wt(x)<n.
2) We can view R(X) as an integer polynomial with coefficients in {0, . . . ,5}.
By repeating each monomial sufficiently many times, we can write

R(X) =
∑
α

∏
i∈α

Xi
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The elements of the universe are the monomials. If α is repeated c times
in R(X), then there are c elements in the universe, one for each occurrence
of α. For each x∈ {0,1}m of weight n, the set S(x) consists of monomials
that evaluate to 1 on x. One can verify that this system has restricted
intersections mod 6 since |S(x)∩S(y)|=R(x∩y).
3) The vertices of the graph H are the sets S(x). We add edge (S(x),S(y))
if |S(x)∩S(y)|≡0 mod 2.

We wish to show that this graphH is the same as the graphG constructed
above. We identify x ∈ V (G) with S(x) ∈ V (H). In H, we add an edge
between S(x) and S(y) if R(x∩y)≡0 mod 2. By the CRT, this implies that
P (x∩y)≡0 mod 2. By Lucas’ theorem, this happens if wt(x∩y) 6≡−1 mod 2k.
But this is precisely when (x,y) is an edge of G.

This equivalence can also be seen from Kutin’s construction [21]. While
Grolmusz’s set system construction is an important result, our approach
seems to be simpler for the purpose of Ramsey graph construction. One can
interpret the bounds on clique and independent set size as coming from an
extension of the modular Ray-Chaudhuri-Wilson theorem to prime powers,
which we prove below (Theorem 18).

5.1. Set systems with restricted intersections modulo prime
powers

Definition 14. A set system F = {Si} on [n] is said to have restricted
intersections mod q if there exists L⊂ Zq so that |Si| mod q /∈ L but |Si∩
Sj | mod q∈L.

For a fixed modulus q, we study the problem of how large |F| can be
as a function of n. When q = p is a prime, the non-uniform modular Ray-
Chaudhuri-Wilson theorem proved by Deza, Frankl and Singhi [5] gives a
bound of

|F| ≤
(

n

≤ |L|

)
≤
(

n

≤ p− 1

)
When q is not a prime power, Grolmusz shows a lower bound of nω(1) [18]. We
give a near-tight bound of

(
n

≤pa−1
)

for the prime power case. This improves

the bound of
(

n
≤2|L|−1

)
due to Babai et al. [6]. Previously stronger bounds

than ours were known for the special case when |L|=pa−1 i.e. when all set
sizes are congruent to k mod pa for some k (see theorems 5.30 and 7.18 in
the book by Babai and Frankl [5]). To prove our result, we use the fact that
every function from Zpa to Zp can be written as a polynomial.
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Theorem 18. Let F be a set system with restricted intersections modulo
pa. Then |F|≤

(
n

≤pa−1
)
.

Proof. We construct a univariate integer-valued polynomial P (X)∈Q[X]
of degree pa−1 such that

P (x) ≡

{
1 mod p x mod pa ∈ L
0 mod p x mod pa /∈ L

By Lucas’ theorem, (
x

pa − 1

)
≡

{
1 mod p x ≡ pa − 1 mod pa

0 mod p x 6≡ pa − 1 mod pa

⇒
(
x− `+ pa − 1

pa − 1

)
≡

{
1 mod p x ≡ ` mod pa

0 mod p x 6≡ ` mod pa

Set P (X) =
∑
`∈L

(
X − `+ pa − 1

pa − 1

)
By Lemma 3.1, of [6] this implies the desired bound. We sketch the argument
below.

We will use Si to denote the incidence vector of set Si. Let Pi(X1, . . . ,
Xn)=P (

∑
j∈Si

Xj) and multi-linearize. It is easy to show that

Pi(Sj) = P (|Si ∩ Sj |) ≡

{
1 mod p i = j

0 mod p i 6= j

Using this one can show that the polynomials Pi(X) are linearly independent
over Q. Since they are multilinear polynomials in n variables of degree pa−1,
the bound follows.

6. Discussion and open problems

Following the breakthrough of Barak et al. [8], the algebraic construction
described here are no longer the best constructions known. However, the
appeal of these constructions is their simplicity and elegance, together with
the fact that they are very explicit. So we believe that it is important to
resolve the question of whether this approach can beat the Frankl-Wilson
bound. As we have seen, this problem is intimately linked to well-studied
questions in complexity theory.
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Lower bounds for asymmetric polynomials: The question of whether
there are lower degree weak representations of the OR function mod 6 has
been open for a while. This work raises the question of whether low degree
OR representations exist for our definition. Better upper bounds would give
better Ramsey graphs. Lower bounds for prime representations will imply
lower bounds for weak representations mod 6. Prime-power representations
are exciting from the lower bound viewpoint since they have not been studied
previously and might turn out to be easier to work with. The Ω(logn) lower
bound of Barrington and Tardos [25] applies to both kinds of representations.

Both our lower bounds for symmetric polynomials follow a similar
scheme: we characterize the zero-sets of low-degree symmetric polynomials
and then show that there is no good partition of the hypercube. A natural
question is whether such a scheme could extend to the general case. The
first step would be to give a of characterization of zero-sets of low degree
polynomials. Motivated by this we pose the following problems:

1. Given S⊆{0,1}n\0, let degp(S) denote the smallest degree of a polyno-
mial in Zp[X] which is 0 at every point in S but not at the origin. Give
a lower bound on degp(S).

2. Given S⊂{0,1}n, let deg′p(S) denote the smallest degree of a polynomial
in Zp[X] which is 0 over S but not at every point in {0,1}n. Give a lower
bound on deg′p(S).

Note that both these quantities are easy to compute, since they involve
checking whether a system of equations is feasible. We are looking for a com-
binatorial lower bound, perhaps analogous to Lemma 6. The latter quantity
deg′P (S) is closely related to the notion of the degree of a subset studied by
Smolensky with a view towards proving circuit lower bounds [24]. The main
difference is that he requires the zero-set to be exactly the set S.

Limitations to constructions based on distances: We have shown that
using symmetric polynomials in out construction, current techniques cannot
give better bounds on α(G),ω(G). Note that for the constructions of Alon,
Frankl-Wilson and Grolmusz, this technique gives tight bounds.This raises
the question: do constructions based on symmetric polynomials contain ei-
ther a large clique or independent set?

Using a symmetric polynomial in our construction gives a graph where
edges are added between vertices based on the Hamming distance between
them. More formally, letD⊂{1, . . . ,n}. The graphG(D) is defined as follows:
The vertex set is {0,1}n. We add (x,y) to E if d(x,y)∈D. Is it true that
for every choice of D, G(D) contains a large clique or independent set?
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Similarly in Construction 2, symmetric polynomials give graphs where
the vertices are sets and edges are added based on intersection sizes. Do
such graphs always contain large cliques or independent sets?
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