

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. © 2019 Society for Industrial and Applied Mathematics
Vol. 50, No. 3, pp. STOC16-30–STOC16-67

TWO-SOURCE DISPERSERS FOR POLYLOGARITHMIC ENTROPY
AND IMPROVED RAMSEY GRAPHS∗

GIL COHEN†

Abstract. In his 1947 paper that inaugurated the probabilistic method, Erdős proved the
existence of (2+o(1)) logn-Ramsey graphs on n vertices. Matching Erdős’s result with a constructive
proof is considered a central problem in combinatorics and has gained significant attention in the
literature. The state-of-the-art result was obtained in the celebrated paper by Barak et al. [Ann.

of Math. (2), 176 (2012), pp. 1483–1543], who constructed a 22
(log logn)1−α

-Ramsey graph for some
universal constant α > 0. In this work, we significantly improve the result of Barak et al. and
construct 2(log logn)c -Ramsey graphs, for some universal constant c. In the language of theoretical
computer science, this resolves the problem of explicitly constructing dispersers for two n-bit sources
with entropy polylog(n). In fact, our disperser is a zero-error disperser that outputs a constant
fraction of the entropy. Previously, such dispersers could only support entropy Ω(n).

Key words. Ramsey graphs, two-source dispersers, explicit constructions

AMS subject classifications. 05D10, 68Q87

DOI. 10.1137/16M1096219

1. Introduction. Ramsey theory is a branch of combinatorics that studies the
unavoidable presence of local structure in globally unstructured objects. In the paper
that pioneered this field of study, Ramsey [35] considered an instantiation of this
phenomena in graph theory.

Definition 1.1 (Ramsey graphs). A graph on n vertices is called k-Ramsey if it
contains no clique or independent set of size k.

Ramsey showed that there does not exist a graph on n vertices that is log(n)/2-
Ramsey. In his influential paper that inaugurated the probabilistic method, Erdős [18]
complemented Ramsey’s result and showed that most graphs on n vertices are (2 +
o(1)) log n-Ramsey. Unfortunately, Erdős’s argument is nonconstructive, and one does
not obtain from Erdős’s proof an example of a Ramsey graph with such parameters.
Erdős offered a $100 prize for matching his result, up to any multiplicative constant
factor, by a constructive proof, that is, coming up with an explicit construction of an
O(log n)-Ramsey graph. Erdős’s challenge gained significant attention in the litera-
ture. In Table 1 we give a summary of known explicit constructions. Other works
studied the difficulty of constructing Ramsey graphs [23] and suggested routes toward
constructing improved Ramsey graphs [24].

The notion of explicitness was formalized in the computational era. While, clas-
sically, a succinct mathematical formula was widely considered to be an explicit de-
scription, complexity theory suggests a more relaxed, and arguably more natural,
interpretation of explicitness. An object is deemed explicit if one can efficiently con-

∗Received by the editors September 29, 2016; accepted for publication (in revised form) October 2,
2017; published electronically October 21, 2019. An extended abstract of this work was published in
the Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS).

https://doi.org/10.1137/16M1096219
Funding: This work was partially supported by an ISF grant and by the I-CORE program of

the planning and budgeting committee.
†Department of Computer Science and Applied Mathematics, Weizmann Institute of Science,

Rehovot, Israel. Current address: Department of Computer Science, Princeton University, Princeton,
NJ 08540 (gilc@princeton.edu).

STOC16-30

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/16M1096219
mailto:gilc@princeton.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RAMSEY GRAPHS STOC16-31

struct that object from scratch. More specifically, a graph on n vertices is explicit if
given the labels of any two vertices u, v, one can efficiently determine whether there
is an edge connecting u, v in the graph. Since the description of u, v consists of 2 log n
bits, quantitatively, for efficiency we require that the running-time for determining
connectivity between any two vertices be polylog(n).

Ramsey graphs have an analogous definition for bipartite graphs. A bipartite
graph on two sets of n vertices is bipartite k-Ramsey if it has no k × k complete
or empty bipartite subgraph. One can show that a bipartite Ramsey graph induces
a Ramsey graph with comparable parameters. Thus, constructing bipartite Ramsey
graphs is at least as hard as constructing Ramsey graphs, and it was believed to be a
strictly harder problem. Nevertheless, the best known construction of Ramsey graphs
is in fact bipartite. Furthermore, Erdős’s argument holds as is for bipartite graphs.

Building on [5], in their celebrated paper, Barak et al. [6] demonstrated an explicit

bipartite k(n)-Ramsey graph on n vertices with k(n) = 22(log logn)1−α

, where α > 0
is some small universal constant. In particular, k(n) = 2o(logn) is subexponential in
the desired value, namely, log n. In this paper we give an explicit construction of a
bipartite k(n)-Ramsey graph with k(n) that is quasi-polynomial in the desired value.1

Table 1
Summary of Ramsey graph constructions from the literature.

Construction k(n) Bipartite

[18] (nonconstructive) 2 logn X

[1] nlog5 2

[32] n1/3

[20] no(1)

[13] 2O((logn)3/4·(log logn)1/4)

[21, 33, 2, 25, 3] 2O(
√
logn·log logn)

The Hadamard matrix (folklore)
√
n X

[34] n1/2−o(1) X

[5] no(1) X

[6] 22
(log logn)1−α

X

This work 2(log logn)O(1)
X

Theorem 1.2 (Ramsey graphs). There exists an explicit bipartite 2(log logn)c-
Ramsey graph on n vertices, where c is some universal constant.

We remark that the constant c in Theorem 1.2 as well as the constant in the
exponent of the polylog(n) running-time are not too large, though we made no attempt
at bounding them. On the other hand, the algorithm that generates our Ramsey graph
is fairly involved and does not have a short and simple description. Presenting the
algorithm, even without taking into account the (highly involved) building blocks
from the literature that we use, will require some preparation.

1A function f : N → N is quasi-polynomial if there exist constants c,m0 such that f(m) ≤
2(logm)c for all m > m0.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC16-32 GIL COHEN

It is worth mentioning that the graph that we construct has a stronger property
than being Ramsey. Namely, for k = 2(log logn)c , any k by k bipartite subgraph has a
relatively large bipartite subgraph of its own with edge density close to 1/2. An analo-
gous property holds even in the multicolored setting. This stronger property is related
to the well-known two-source extractors problem from theoretical computer science.
In what follows we move to present our results in the language of computer science.
We do so mainly because the techniques we apply are most naturally presented from
that perspective.

1.1. Two-source zero-error dispersers, extractors, and subextractors.
In the language of theoretical computer science, Theorem 1.2 translates to a disperser
for two independent n-bit sources with entropy O(logc n). We first recall some basic
definitions.

Definition 1.3 (statistical distance). The statistical distance between two dis-
tributions X,Y on a common domain D is defined by

SD (X,Y) = max
A⊆D

{|Pr[X ∈ A]−Pr[Y ∈ A] |} .

If SD(X,Y) ≤ ε we say that X is ε-close to Y (and, of course, Y is ε-close to X)
and write X ∼ε Y .

Definition 1.4 (min-entropy). The min-entropy of a random variable X is de-
fined by

H∞(X) = min
x∈supp(X)

log2

(
1

Pr[X = x]

)
.

If X is supported on {0, 1}n, we define the min-entropy rate of X by H∞(X)/n. In
such a case, if X has min-entropy k or more, we say that X is an (n, k)-weak-source
or simply an (n, k)-source. We sometimes abbreviate and simply say entropy (resp.,
entropy rate) instead of min-entropy (resp., min-entropy rate). This should cause no
confusion as the only measure of entropy used in this paper is min-entropy.

Definition 1.5 (two-source zero-error dispersers). A function Disp : {0, 1}n ×
{0, 1}n → {0, 1}m is called a two-source zero-error disperser for entropy k if for
any two independent (n, k)-sources X,Y , it holds that

supp(Disp(X,Y)) = {0, 1}m.

Note that a two-source zero-error disperser for entropy k, with a single output bit
(namely, m = 1), is equivalent to a bipartite 2k-Ramsey graph on 2n vertices on each
side. Constructing two-source dispersers for polylogarithmic entropy is considered
a central problem in pseudorandomness that we resolve in this paper. Indeed, a
bipartite 2poly(log logn)-Ramsey graph on n vertices is equivalent to a disperser for
entropy polylog(n). From the point of view of dispersers, it is easier to see how
challenging Erdős’s goal of constructing O(log n)-Ramsey graphs is. Indeed, these
are equivalent to dispersers for entropy log2(n) +O(1). Even a disperser for entropy
O(log n) does not quite meet Erdős’s goal as it translates to a polylog(n)-Ramsey
graph.

While Theorem 1.2 already yields a two-source zero-error disperser for polylog-
arithmic entropy, it is desired to construct dispersers with many output bits. Our
construction has this property.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RAMSEY GRAPHS STOC16-33

Theorem 1.6 (two-source zero-error dispersers). There exists an explicit two-
source zero-error disperser for n-bit sources having entropy k = polylog(n), with
m = kΩ(1) output bits.

Theorem 1.6 gives an explicit zero-error disperser for polylogarithmic entropy with
many output bits. Prior to this work, the state-of-the-art zero-error disperser with
a super constant number of output bits, due to Gabizon and Shaltiel [22], required
entropy k = Ω(n). In fact, partially motivated by applications to data structures [19],
in [22] a stronger variant of a two-source zero-error disperser was constructed, in
which every element in the range is obtained with probability at least δ = δ(n). Our
construction has this property as well. In fact, a stronger property holds. Before
discussing this stronger property, we remark that by applying a result of [22], one can
increase the output length of the disperser from Theorem 1.6 to m = Ω(k) without
asymptotic loss of parameters.

As previously mentioned, our construction has a stronger property than merely
being a disperser. To present this property, we start by recalling the notion of a
two-source extractor, introduced by Chor and Goldreich [12].

Definition 1.7 (two-source extractors). A function Ext : {0, 1}n × {0, 1}n →
{0, 1}m is called a two-source extractor for entropy k, with error guarantee ε, if for
any two independent (n, k)-sources X,Y , it holds that Ext(X,Y) is ε-close to uniform.

Chor and Goldreich [12] proved that there exist two-source extractors with error
guarantee ε for entropy k = log(n)+2 log(1/ε)+O(1) with m = 2k−2 log(1/ε)−O(1)
output bits. A central open problem in pseudorandomness is to match this existential
proof with an explicit construction having comparable parameters. Unfortunately,
even after almost 30 years, little progress has been made even when setting m = 1.

In their paper, Chor and Goldreich gave an explicit construction of a two-source
extractor for entropy (0.5 + δ)n, where δ > 0 is any fixed constant. Although this is
very far from what is obtained by the existential argument, it took almost 20 years
before any improvement was made. Bourgain [9] constructed a two-source extractor
for entropies (1/2 − α) · n, where α > 0 is some small universal constant. An in-
comparable result was obtained by Raz [38], who required one source to have entropy
(0.5 + δ)n, where δ > 0 is any fixed constant, but allowed the other source to have
entropy O(log n). Several weaker variants of two-source extractors [26, 36] and condi-
tional two-source extractors [12, 8] were constructed in the literature, but even these
constructions only support linear entropy.

In this paper we construct a pseudorandom object that is stronger than a two-
source zero-error disperser yet is weaker than a two-source extractor. Informally
speaking, this is a function with the following property. “In” any two independent
weak-sources there exist two independent weak-sources with a comparable amount of
entropy to the original sources, restricted to which, the function is close to uniform.
To give a formal definition, we first recall the definition of a subsource, introduced
in [5].

Definition 1.8 (subsources). Given random variables X and X ′ on {0, 1}n, we
say that X ′ is a subsource of X and write X ′ ⊂ X if there exists a set A ⊆ {0, 1}n
such that X ′ = X | {X ∈ A}. That is, for every a ∈ A, Pr[X ′ = a] is defined by
Pr[X = a | X ∈ A] and for a 6∈ A, Pr[X ′ = a] = 0.

Definition 1.9 (two-source subextractors). A function SubExt : {0, 1}n×{0, 1}n →
{0, 1}m is called a two-source subextractor for outer-entropy kout and inner-entropy
kin, with error guarantee ε, if the following holds. For any independent (n, kout)-

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC16-34 GIL COHEN

sources X,Y , there exist min-entropy kin subsources X ′ ⊂ X, Y ′ ⊂ Y , such that
SubExt(X ′, Y ′) is ε-close to uniform.

Although we are not aware of the definition of two-source subextractors made
explicit in previous works, we note that the two-source disperser constructed by Barak
et al. [5] is in fact a two-source subextractor. More precisely, for any constant δ >
0, the authors construct a two-source subextractor for outer-entropy δn and inner-
entropy poly(δ)n. On the other hand, by a careful inspection, the state-of-the-art
two-source disperser by Barak et al. [6] does not seem to be a subextractor.

The main theorem proved in this paper is the following.

Theorem 1.10 (two-source subextractors). There exist a universal constant c
and an explicit n-bit two-source subextractor for outer-entropy kout = logc n and inner-

entropy kin = k
Ω(1)
out , with m = k

Ω(1)
in output bits and error guarantee ε = 2−k

Ω(1)
in .

We note that a subextractor for outer-entropy kout with m output bits and error
guarantee ε is a zero-error disperser for entropy kout with min(m, log(1/ε))−1 output
bits (the dependence in the inner-entropy kin follows implicitly due to the general
fact that m ≤ kin). Indeed, one can simply truncate the output of the subextractor
to be short enough so that the error will be sufficiently small to guarantee that any
possible output is obtained. In particular, a subextractor for outer-entropy kout and
inner-entropy kin = 1, with error guarantee ε < 1/2, induces a bipartite 2kout-Ramsey
graph. Thus, Theorem 1.10 readily implies Theorems 1.2 and 1.6.

1.2. Subsequent work. In an exciting subsequent work, Chattopadhyay and
Zuckerman [11] gave a construction of a two-source extractor for polylog(n)-entropy
based on a very different set of ideas than ours. The error of their extractor is
polynomially small in n and the number of output bits is 1. The latter was improved
soon after by Li [29] using similar techniques, with the same error parameter. As
extractors with one output bit yield Ramsey graphs, the work of [11] gives a second
and very different construction of Ramsey graphs matching our parameters.

Following [11], mainly for applications to Ramsey graphs, a line of research was
devoted to reducing the entropy required by a two-source extractor from polylog(n) to
O(log n). In [17] it was noted that existing techniques will not yield extractors with
entropy lower than log2 n. The authors introduced the notion of an independence-
preserving merger and used their construction of such a pseudorandom object to
devise an extractor for O(1/δ) sources, each with min-entropy (log n)1+δ. In a follow-
up work Chattopadhyay and Li [10] gave an improved construction of (a variant of) an
independence-preserving merger and used that to obtain an extractor for O(1) sources

each with entropy log n·2
√

log logn = (log n)1+o(1). In an independent work [15], a five-

source extractor for entropy log n ·2
√

log logn was constructed. Ben-Aroya, Doron, and
Ta-Shma [7] then got the number of sources down to two, with similar min-entropy.
In fact, their result can be viewed as a lossless reduction from two-source extractors
to nonmalleable extractors, improving upon a lossy reduction that was introduced
in [11] and on lossless reduction from [15] that requires five rather than two sources.
In subsequent works [16, 31], improved nonmalleable extractors were constructed, and
by appealing to the Ben-Aroya et al. reduction, these results yield an explicit bipartite
k-Ramsey graph for k = (log n)O(log log logn) [31].

1.3. Organization of this paper. In section 2 we give an informal overview of
the challenge-response mechanism. Section 3 contains a comprehensive and detailed
overview of our construction and analysis. These two sections are meant only for

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RAMSEY GRAPHS STOC16-35

building intuition. The reader may freely skip these sections at any point as we make
no use of the results that appear in them.

In section 4 we give some preliminary definitions and results that we need. Sec-
tion 5 contains the formal description of the challenge-response mechanism. In sec-
tion 6 we present the notions of entropy-trees and tree-structured sources. Finally, in
section 7 we give the formal construction of our subextractor, and we analyze it in
section 8.

2. Overview of the challenge-response mechanism. Our subextractor con-
struction is based on the challenge-response mechanism that was introduced in [5] and
refined in [6]. As we are aiming for a self-contained paper, in this section we explain
how this powerful mechanism works. Further, our presentation is somewhat more
abstract than [5, 6], which we believe may contribute to the clarity of the exposition.
To illustrate the way the mechanism works, we give a toy example in section 2.4.

Before presenting the challenge-response mechanism, we give the definition for
the deficiency of a subsource [5]. Let X ′ be a subsource of X, and let A be the set
such that X ′ = X | {X ∈ A}. Then, we say that X ′ is a deficiency d subsource of X
if Pr[X ∈ A] ≥ 2−d.

2.1. Motivating the challenge-response mechanism. We start by recalling
the notation of a block-source [12].

Definition 2.1. Let n be an even integer. A random variable X on n-bit strings
is called an (n, k)-block-source, or simply a k-block-source, if the following hold:

• H∞(left(X)) ≥ k, where left(X) is the length n/2 prefix of X.
• For any x ∈ supp(left(X)) it holds that H∞(right(X) | {left(X) = x}) ≥ k,

where right(X) is the length n/2 suffix of X.

Following a long line of research [12, 4, 38, 5, 37, 27, 28], in a recent breakthrough,
Li [30] gave a construction of an extractor BExt for two n-bit sources, where the first
source is a polylog(n)-block-source and the second is a weak-source with min-entropy
polylog(n) (see Theorem 4.1). In particular, Li obtained a three-source extractor for
polylogarithmic entropy, but his result is stronger than that, and we are using this
stronger property. As our goal is to construct a two-source subextractor for outer-
entropy polylog(n), a first attempt would be to show that any source X with entropy
polylog(n) has a subsource X ′ that is a polylog(n)-block-source. If this assertion were
to be true, then BExt would have been a two-source subextractor.

This, however, is clearly not the case. Consider, for example, a source X that
has all of its entropy concentrated in its right-block right(X). Namely, left(X) is
fixed to some constant and right(X) has min-entropy k. Clearly, H∞(X) ≥ k, yet no
subsource of X is even a 1-block-source.

Such an example can only hold when the entropy is no larger than n/2. Indeed,
informally speaking, one cannot squeeze, say, 0.6n entropy to the n/2 bits of right(X).
Restricting ourselves, for the moment, to the very high entropy regime, we ask whether
this example is the only problematic example. In particular, is it true that any n-bit
source with min-entropy 0.6n is a block-source? The answer to this question is still
no. Nevertheless, one can show that any (n, 0.6n)-weak-source has a low-deficiency
subsource that is a 0.1n-block-source. This simple observation will be important for
us later on.

Going back to the example above, if only there were a magical algorithm that,
given a single sample x ∼ X, would have been able to determine correctly whether
or not left(X) is fixed to a constant, then we would have been in better shape as

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC16-36 GIL COHEN

we would have known to “concentrate our efforts” on right(X). Such an algorithm,
however, is too much to hope for. Indeed, given a single sample x ∼ X, one simply
cannot tell whether the left block of X is fixed or not. Still, the powerful challenge-
response mechanism allows one to almost accomplish this task using an additional
independent sample. In the next section we present a slightly informal version of the
challenge-response mechanism. A formal treatment of the actual mechanism is given
in section 5.

2.2. The challenge-response mechanism. We start this section by presenting
a dream version of the challenge-response mechanism.

The challenge-response mechanism—dream version. For integers ` < n,
a dream version of the challenge-response mechanism would be a poly(n)-time com-
putable function

DreamResp : {0, 1}n × {0, 1}n × {0, 1}` → {fixed, hasEntropy}

with the following property. For any two independent (n, polylog(n))-sources X,Y ,
and for any function Challenge : {0, 1}n × {0, 1}n → {0, 1}`, the following hold:

• If Challenge(X,Y) is fixed to a constant, then

Pr
(x,y)∼(X,Y)

[DreamResp (x, y,Challenge(x, y)) = fixed] = 1.

• If H∞(Challenge(X,Y)) is sufficiently large, then

Pr
(x,y)∼(X,Y)

[DreamResp (x, y,Challenge(x, y)) = hasEntropy] = 1.

Note that for any function Challenge, the function DreamResp distinguishes be-
tween the case that Challenge(X,Y) is fixed and the case that Challenge(X,Y) has
enough entropy. Unfortunately, DreamResp will remain a dream. The actual challenge-
response mechanism requires more from the inputs and has a weaker guarantee on
the output. The difference between the dream version and the actual mechanism
contributes to why our subextractor is defined the way it is, and so in this section
we present the actual challenge-response mechanism (though in a slightly informal
manner).

The actual challenge-response mechanism. For integers ` < n, the challenge-
response mechanism is a poly(n)-time computable function

Resp : {0, 1}n × {0, 1}n × {0, 1}` → {fixed, hasEntropy}

with the following property. For any two independent (n, polylog(n))-sources X,Y ,
and for any function Challenge : {0, 1}n × {0, 1}n → {0, 1}`, the following hold:

• If Challenge(X,Y) is fixed to a constant, then there exist deficiency ` sub-
sources X ′ ⊂ X, Y ′ ⊂ Y , such that

Pr
(x,y)∼(X′,Y ′)

[Resp(x, y,Challenge(x, y)) = fixed] = 1.

• If for any deficiency ` subsources X̂ ⊂ X, Ŷ ⊂ Y it holds that
H∞(Challenge(X̂, Ŷ)) ≥ k, then

Pr
(x,y)∼(X,Y)

[Resp(x, y,Challenge(x, y)) = hasEntropy] ≥ 1− 2−k.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RAMSEY GRAPHS STOC16-37

We emphasize the differences between the dream version and the actual challenge-
response mechanism. First, even if Challenge(X,Y) is fixed to a constant, it is not
guaranteed that Resp will correctly identify this on any sample from (X,Y). In fact,
it is not even guaranteed that Resp will identify this correctly with high probability
over the sample. The actual guarantee is that there exist low-deficiency subsources
X ′ ⊂ X, Y ′ ⊂ Y , such that given any sample (x, y) ∼ (X ′, Y ′), Resp will correctly
output fixed. As our goal is to construct a subextractor, this is good enough for us,
as we can imagine that we are given samples from X ′, Y ′ rather than from X,Y for
the rest of the analysis (we do have to be careful when dealing with error terms when
moving to subsources, but we will ignore this issue for now).

The second thing to notice is that for the challenge-response mechanism to identify
the fact that Challenge(X,Y) has entropy, a stronger assumption is made. Namely,
it is not enough that Challenge(X,Y) has a sufficient amount of entropy, but rather
we need that Challenge(X̂, Ŷ) has enough entropy for all low-deficiency subsources
X̂ ⊂ X, Ŷ ⊂ Y . So, informally speaking, for the challenge-response mechanism to
“sense” entropy, this entropy must be “robust” in the sense that the entropy exists
even when applying Challenge on all low-deficiency subsources of X,Y . Further, note
that, unlike the first case, in the second case Resp introduces a small error.

2.3. The three-types lemma. The challenge-response mechanism is very im-
pressive. However, the mechanism only distinguishes between two extreme cases—no
entropy versus high entropy. It is much more desired to be able to distinguish between
low entropy versus high entropy. Indeed, altering the example from section 2.1 a bit,
what if the entropy in the left block of a source is too low to work with, yet the block
is not fixed to a constant, and so the challenge-response mechanism is inapplicable?

The next lemma shows that if we are willing to work with subsources (and we
are), then this is a nonissue. Namely, every source has a low-deficiency subsource
with a structure suitable for the challenge-response mechanism. We present here a
slightly informal version of this lemma. The reader is referred to Lemma 6.7 for the
formal statement.

Lemma 2.2 (the three-types lemma). For any (n, k)-source X and integer b <
k/2, there exists a deficiency b + 2 subsource X ′ ⊂ X such that (at least) one of the
following holds:

• X ′ is a b-block-source.
• H∞(left(X ′)) ≥ k − b.
• left(X ′) is fixed to a constant, and H∞(right(X ′)) ≥ k − b.

One should think of b = o(k) that is still “large enough,” for example, b =
√
k.

In such case, Lemma 2.2, which is a variant of the two-types lemma by Barak et
al. [6], states that any source X has a deficiency ∼

√
k subsource X ′ with a useful

structure. If X ′ is not a
√
k-block-source, then either essentially all of the entropy

already appears in left(X ′), or otherwise left(X ′) is fixed to a constant and right(X ′)
has almost all the entropy of X.

As a corollary of the three-types lemma, we conclude the informal assertion made
in section 2.1. Namely, if X is an (n, k)-source with k > n/2, say k = (1/2 + α)n
for some constant α > 0, then X has a deficiency αn + O(1) subsource that is an
(αn−O(1))-block-source. Indeed, by applying Lemma 2.2 to X with b = αn− 1 we
see that the second and third cases of the lemma cannot hold since by this choice
of b, k − b > n/2 (and the entropy of a random variable on n/2 bits cannot exceed
its length). Thus, the first case must hold; namely, there is a deficiency αn + O(1)

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC16-38 GIL COHEN

subsource of X that is (αn − O(1))-block-source. For ease of readability, in this
informal section we typically ignore additive constant loss in deficiency and entropy.

2.4. Playing with the challenge-response mechanism. Lemma 2.2 is an
important supplement to the challenge-response mechanism. However, it is still not
even clear how the two together can be used to break the “0.5 barrier” discussed in
section 2.1—for example, how they together can be used to give a subextractor for
outer-entropies 0.4n,polylog(n).

Let us try to see what can be said. Say X is an (n, 0.4n)-source. By Lemma 2.2,
applied with b = 0.1n, there exists a deficiency 0.1n subsource X ′ of X, such that one
of the following holds:

• X ′ is a 0.1n-block-source.
• H∞(left(X ′)) ≥ 0.3n.
• left(X ′) is fixed to a constant, and H∞(right(X ′)) ≥ 0.3n.

Note that in the second case, left(X ′) has entropy rate 0.6. Thus, left(X ′) has a
subsource that is an Ω(n)-block-source. Similarly, in the third case, right(X ′) has a
subsource that is an Ω(n)-block-source. Thus, we conclude that any (n, 0.4n)-source
has a subsource X ′′ ⊂ X such that at least one of X ′′, left(X ′′), right(X ′′) is an
Ω(n)-block-source. Further, in the last case, left(X ′′) is fixed to a constant.

By the above discussion, even without resorting to the challenge-response mecha-
nism, we know that at least one of BExt(X ′′, Y),BExt(left(X ′′), Y),BExt(right(X ′′), Y)
is close to uniform. The challenge-response mechanism allows us to obtain something
stronger. Although we will not be able to get a subextractor for outer-entropies
0.4n, polylog(n) this way, it is instructive to see the technique being used.

Set BExt to output ` = o(k) bits, where k = polylog(n) is the outer-entropy of
the second source. Consider the following algorithm.

A toy algorithm. On input x, y ∈ {0, 1}n
• Compute z(x, y) = Resp(x, y,BExt(left(x), y)).
• If z = fixed declare that BExt(right(x), y) is close to uniform.
• Otherwise, declare that one of BExt(x, y), BExt(left(x), y) is close to uniform.

The above algorithm does not look very impressive. Essentially, it only cuts down
our lack of knowledge a bit. That is, instead of declaring that one of three strings is
close to uniform, it is able to declare that one of at most two strings is close to uniform.
Nevertheless, as mentioned above, it is instructive to see the proof technique applied
to this simple toy example. Moreover, as we will see in section 3.2, this algorithm is
a special case of an algorithm by [6] that will be important for our construction as
well. We now prove that the algorithm’s declaration is correct. More precisely, we
prove the following.

Claim 2.3. Let X be an (n, 0.4n)-source, and let Y be an independent (n, k)-
source, with k = polylog(n). Then, there exist subsources X ′ ⊂ X, Y ′ ⊂ Y , such that
with probability 1 over (x, y) ∼ (X ′, Y ′) the declaration of the algorithm is correct.

The proof of Claim 2.3 showcases the following three facts about low-deficiency
subsources. None of these facts is very surprising, but we make extensive use of them
throughout the paper, and it is beneficial to see these facts in action on a simple
example. Here we give slightly informal (and inaccurate) statements. For the formal
statements see Fact 4.3, Fact 4.4, and Lemma 4.6.

Fact 2.4. Let X be a random variable with min-entropy k, and let X ′ be a defi-
ciency d subsource of X. Then, H∞(X ′) ≥ k − d.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RAMSEY GRAPHS STOC16-39

Fact 2.5. Let X be a random variable on n-bit strings. Let f : {0, 1}n → {0, 1}`
be an arbitrary function. Then, there exist c ∈ {0, 1}` and a deficiency ` subsource
X ′ of X such that f(x) = c for every x ∈ supp(X ′).

Lemma 2.6. Let X be a k-block-source, and let X ′ be a deficiency d subsource of
X. Then, X ′ is a k − d block-source.

Proof of Claim 2.3. We start by applying the three-types lemma as discussed
above so as to obtain a subsource X ′ ⊂ X with the properties listed above. Namely,
at least one of X ′, left(X ′), right(X ′) is an Ω(n)-block-source. Further, in the last
case, left(X ′) is fixed to a constant.

Consider first the case where left(X ′) is fixed and right(X ′) is an Ω(n)-block-
source. Note that in this case, BExt(left(X ′), Y) is a deterministic function of Y .
Since the output length of BExt is `, Fact 2.5 implies that there exists a deficiency
` subsource Y ′ ⊂ Y such that BExt(left(X ′), Y ′) is fixed to a constant. We are now
in a position to apply the challenge-response mechanism to conclude that there exist
deficiency ` subsources X ′′ ⊂ X ′, Y ′′ ⊂ Y ′ such that

(2.1) Pr [z(X ′′, Y ′′) = fixed] = 1.

Recall that right(X ′) is an Ω(n)-block-source. Hence, by Lemma 2.6, since X ′′ is a
deficiency ` = o(n) subsource of X ′, we have that right(X ′′) is also an Ω(n)-block-
source. Similarly, since H∞(Y) = k = ω(`), Fact 2.4 implies that H∞(Y ′′) = k−2` =
polylog(n). Thus, BExt(right(X ′′), Y ′′) is close to uniform. To summarize, in the case
that left(X ′) is fixed, there exist subsources X ′′ ⊂ X, Y ′′ ⊂ Y on which the algorithm
correctly declares that BExt(right(X ′′), Y ′′) is close to being uniformly distributed.

Consider now the case where left(X ′) is not fixed. Thus, at least one of X ′,
right(X ′) is an Ω(n)-block-source. Therefore, following an argument similar to the
one used above, the algorithm’s declaration in this case is correct on some pair of
corresponding subsources.

In this section we gained some familiarity with the challenge-response mechanism
and with the three-types lemma (Lemma 2.2), which is an important supplement to
the mechanism. Hopefully, this experience will assist the reader in what follows.

3. Overview of the construction and analysis. In this section we present our
construction of subextractors and give a comprehensive and detailed overview of the
proof, though we allow ourselves to be somewhat imprecise whenever this contributes
to the presentation. The formal proof, which can be recovered by the content of this
section, appears in section 8. In section 3.1, we introduce the notions of entropy-
trees and tree-structured sources. A variant of these notions was used by [6]. Then,
in section 3.2, we overview the approach taken by [6] for their construction of two-
source dispersers. Once the results needed from [6] are in place, in section 3.3 we give
an overview for the rest of our construction and emphasize where our ideas deviate
from theirs. In the following sections of this overview (see sections 3.4 and 3.5) we
give further details.

3.1. Entropy-trees and tree-structured sources.

Motivating the notion of an entropy-tree. We already saw that an n-bit
source with entropy-rate 0.6 has a subsource that is an Ω(n)-block-source. Further,
by applying the three-types lemma (Lemma 2.2) twice, we saw that either any source
X with entropy-rate 0.4 has a subsource that is an Ω(n) block-source, or otherwise one
of left(X), right(X) is an Ω(n) block-source. We, however, are interested in sources X

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC16-40 GIL COHEN

with only polylog(n) entropy. Is it true that there is a block-source “lying somewhere”
in X (or in a low-deficiency subsource of X) even for such low entropy? Yes, it is!
Although we have to dig deeper.

To see why this is true, say X is an (n, k)-source. Lemma 2.2, set with b =
√
k,

implies that there exists a deficiency
√
k subsource X ′ of X. Either X ′ is a

√
k-block-

source, or otherwise it holds that one of left(X ′), right(X ′) has almost all the entropy
of X, namely, entropy k −

√
k. In other words, if X ′ is not a block-source, then the

entropy-rate of one of left(X ′), right(X ′) has almost doubled.
Assume that X ′ is not a block-source, and that left(X ′) has entropy k −

√
k. By

Lemma 2.2, set again with b =
√
k, there exists a deficiency

√
k subsource X ′′ ⊂ X ′

such that either left(X ′′) is a
√
k-block-source, or otherwise one of left(left(X ′′)),

right(left(X ′′)) has min-entropy k − 2
√
k. That is, if left(X ′′) is also not a

√
k-block-

source, then the entropy-rate of one of left(left(X ′′)), right(left(X ′′)) is almost four
times the original entropy-rate of X.

Continuing this process, at some point we are bound to find a block-source. In-
deed, if we failed to find a block-source in the first r iterations then there is a deficiency
r
√
k subsource X(r) ⊂ X and a length n ·2−r block of X(r) that has entropy k−r

√
k.

Thus, if k − r
√
k > 0.6n · 2−r, then this block has a subsource that is a block-source,

which will be found in the next iteration. Hence, if k = ω(log2 n), then a block-source
will be found in the first log(n/k) +O(1) iterations of this process.2

As we apply Lemma 2.2 at most log n times in the process described above, and
since in each application we move to a deficiency

√
k subsource, we conclude that

every (n, k)-source has a deficiency
√
k log n subsource that contains a block-source

as a block. This block-source can be found (in the analysis) by following a certain
“path of entropy” that determines which of the two halves of the current block of the
source contains essentially all the entropy.

Entropy-trees. The above discussion naturally leads to what we call an entropy-
tree and sources that have a tree-structure. An entropy-tree (see Figure 1) is a com-
plete rooted binary tree T , where some of its nodes are labeled by one of the following
labels: H,B,F, which stand for high entropy, block-source, and fixed, respectively.
The nodes of an entropy-tree are labeled according to rules that capture any possible
entropy structure of a subsource obtained by the process described above. The rules
are as follows:

𝐻

𝐹 𝐻

𝐹 𝐻

𝐻

𝐵𝐹

Fig. 1. An example of an entropy-tree. Unlabeled nodes and edges to them do not appear in
the figure.

2Here and throughout the paper, the logarithm is always taken base 2.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RAMSEY GRAPHS STOC16-41

• The root of T , denoted by root(T), is labeled by either H or B, expressing
the fact that we assume the source itself has high entropy, compared to the
entropy of the original source, and may even be a block-source.

• There is exactly one node in T , denoted by vB(T), that is labeled by B. This
expresses the fact we proved, namely, if one digs deep enough, a block-source
will be found. The uniqueness of the node labeled by B captures the fact that
we terminate the process once a block-source is found.

• If v is a nonleaf that has no label, or is otherwise labeled by F or B, then its
sons have no label. This rule captures the fact that a node has no label if we
are not interested in the block of the source that is associated with this node.
Thus, if a block is fixed, we do not try to look for a block-source inside it.
Similarly, if the node is a block-source, we stop the search.

• If v is a nonleaf that is labeled by H, then the sons of v can only be labeled
according to the following rules:

– If leftSon(v) is labeled by F, then rightSon(v) is labeled by either H or B.
– If leftSon(v) is labeled by either H or B, then rightSon(v) has no label.

These rules capture the guarantee of Lemma 2.2.
The entropy-path. With every entropy-tree T , we associate a path that we call

the entropy-path of T . This is the unique path from root(T) to vB(T). We say that
a path in T contains the entropy-path if it starts at root(T) and goes through vB(T).
Note that we allow an entropy-tree to have nodes that are descendants of vB(T). We
just do not allow these nodes to have labels.

Tree-structured sources. Now that we have defined entropy-trees, we can say
what it means for a source to have a T -structure, for some entropy-tree T . To this
end we need to introduce some notation. Let n be an integer that is a power of
2. With a string x ∈ {0, 1}n, we associate a depth log n complete rooted binary
tree, where with each node v of T we associate a substring xv of x in the following
natural way: xroot(T) = x; and for v 6= root(T), if v is the left son of its parent, then
xv = left(xparent(v)); otherwise, xv = right(xparent(v)).

Let T be a depth log n entropy-tree. An n-bit source X is said to have a T -
structure with parameter k if for any node v in T the following hold:

• If v is labeled by F, then Xv is fixed to a constant.
• If v is labeled by H, then H∞(Xv) ≥ k.
• If v is labeled by B, then Xv is a

√
k-block-source.

With the notions of entropy-trees and tree-structured sources, we can summarize
the discussion of this section by saying that any (n, k)-source, with k = ω(log2 n),
has a deficiency

√
k log n subsource that has a T -structure with parameter Ω(k) for

some entropy-tree T (that depends on the underlying distribution of X). Therefore,
for the purpose of constructing subextractors, we may assume that we are given two
independent samples from tree-structured sources rather than from general weak-
sources.

One important observation to keep in mind is the following: By Fact 2.4 and
by Lemma 2.6 it follows that if X ′ is a deficiency d subsource of a source having
a T -structure with parameter k = ω(d), then X ′ has a T -structure with parameter
(1− o(1))k. In particular, we can move to o(k) deficiency subsources throughout the
analysis and still maintain the original tree-structure of the source.

3.2. Identifying the entropy-path. Tree-structured sources certainly seem
nicer to work with than general weak-sources. However, it is still not clear what good
this structure is if we do not have any information regarding the entropy-tree, and in

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC16-42 GIL COHEN

particular regarding the entropy-path.
Remarkably, by applying the challenge-response mechanism in a carefully chosen

manner, Barak et al. [6] were able to identify the entropy-path of the entropy-tree T
algorithmically given just one sample from x ∼ X, where X is a T -structured source,
and one sample from y ∼ Y , where Y is a general weak-source that is independent of
X. We now turn to describe the algorithm used by [6]. Before doing so, it is worth
mentioning that Barak et al. proved something somewhat different. Indeed, they
considered a variant of entropy-trees and had to prove a variant of what we need. In
particular, their algorithm did not identify the entropy-path per se. Nevertheless, their
proof can be adapted in a straightforward manner to obtain the result we describe
next. We give a formal proof of what is needed for our construction in section 8.1.

What does it mean to identify the entropy-path? What do we mean by
saying that an algorithm identifies the entropy-path of an entropy-tree T? This is an
algorithm that on input x, y ∈ {0, 1}n, outputs a depth log n rooted complete binary
tree and a marked root-to-leaf path on that tree, denoted by pobserved(x, y), the observed
entropy-path. Ideally, the guarantee of the algorithm would have been the following:
If x is sampled from a T -structured source X and y is sampled independently from a
weak-source Y , then pobserved(x, y) contains the entropy-path of T with probability 1
over (x, y) ∼ (X,Y). That is, for any (x, y) ∈ supp(X,Y), if we draw the computed
path pobserved(x, y) on the entropy-tree T , then this path starts at root(T) and goes
through vB(T).

Note that the path pobserved(x, y) is allowed to continue arbitrarily after visiting
vB(T). Asking that pobserved(x, y) will stop exactly at vB(T) is a very strong require-
ment. In particular, it will conclude the construction of the subextractor. Indeed,
once the block-source XvB(T) is found, one can simply output BExt(XvB(T), Y).

This was an ideal version of what we mean by identifying an entropy-path. For our
needs, we will be satisfied with a weaker guarantee. Following [6], we will show that
there exist low-deficiency subsources X ′ ⊂ X, Y ′ ⊂ Y , such that with high probability
over (x, y) ∼ (X ′, Y ′) it holds that pobserved(x, y) contains the entropy-path of T .

The fact that we only have a guarantee on low-deficiency subsources is good
enough for us as we are aiming for a subextractor. The fact that there is an error
(that did not appear in the analysis of [6]) should be handled with some care. Indeed,
note that by moving to a deficiency d subsource, an ε error in the original source
can grow to at most 2d · ε restricted to the subsource. We will make sure that the
error is negligible compared to the deficiency we consider in the rest of the analysis.
Thus, from here on we will suppress the error introduced in this step of identifying
the entropy-path.

The algorithm of [6] for identifying the entropy-path. We now describe
the algorithm that was devised by [6] for identifying the entropy-path of an entropy-
tree T . The basic idea was depicted already in the toy algorithm from section 2.4. In
fact, what the toy algorithm actually managed to do was identify the entropy-path of
depth 2 tree-structured sources.

We first note that if root(T) = vB(T), then any observed entropy-path will contain
vB(T). So, we may assume that this is not the case. Let v be the parent of vB(T) in
T . As a first step, we want to determine which of the two sons of v is vB(T). To this
end, we will use the toy algorithm from section 2.4. More precisely, node v declares
that its left son is vB(T) if and only if

(3.1) Response
(
xv, y,BExt

(
xleftSon(v), y

))
= hasEntropy.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RAMSEY GRAPHS STOC16-43

Let us pause for a moment to introduce some notation. If (3.1) holds, we say that
node v (x, y)-favors its left-son; otherwise, we say that v (x, y)-favors its right son.
Moreover, we define the good son of v to be vB(T). More generally, for a node
u 6= vB(T) that is an ancestor of vB(T), we define the good son of u to be its unique
son that is an ancestor of vB(T). Note that by following the good sons from root(T) to
vB(T) one recovers the entropy-path of T . Thus, one correctly identifies the entropy-
path of T on input x, y if and only if any ancestor of vB(T) on the entropy-path of T
(x, y)-favors its good son.

By following the proof of Claim 2.3, one can see that if XleftSon(v) is fixed, then
(3.1) holds with probability 0 on some low-deficiency subsources of X,Y . Further,
by the challenge-response mechanism together with Fact 2.4 and Lemma 2.6, one can
show that if leftSon(v) = vB(T), then with high probability over (X,Y), equation (3.1)
holds. Observe that by the definition of an entropy-tree, these are the only two possible
cases.

We showed how vB(T) can “convince” its parent v that it is its good son. The
trick was to use the block-source-ness of XvB(T) so as to generate a proper challenge.
Considering one step further, we ask the following: If u is the parent of v, how can
v convince u that it is its good son? After all, v is not a block-source. The elegant
solution of Barak et al. is as follows. Given x, y ∈ {0, 1}n, the challenge of v will
contain not only BExt(xv, y) but also BExt(xw, y), where w is v’s (x, y)-favored son.
Thus, if v’s favored son happens to be its good son vB(T), then the challenge posed
by v will not be responded to by u.

More generally, a node v decides which of its two sons it (x, y)-favors not according
to (3.1) but rather according to whether or not

(3.2) Response
(
xv, y,GoodSonCh

(
xleftSon(v), y

))
= hasEntropy,

where GoodSonCh(xleftSon(v), y) is a matrix with at most log n rows (according to the
depth of the tree) that contains BExt(xleftSon(v), y) as a row, as well as BExt(xw, y),
where w is the (x, y)-favored son of leftSon(v), and also BExt(xr, y), where r is the
(x, y)-favored son of w, etc.

The strategy of [6] for determining the output. Having found the entropy-
path of T , we are in a much better shape. We know that one of the nodes on the path
is a block-source. The trouble is that we still do not know which one. We conclude
this section by saying only a few words about the strategy taken by [6] for resolving
this problem, as at this point our strategy deviates from theirs. It is worth mentioning
that the strategy taken by Barak et al. for determining the output is one place in the
construction that poses a bottleneck for supporting entropy 2o(

√
logn). It is also the

reason why the number of output bits in their construction can be at most O(log log n)
and why the construction is only a disperser as apposed to a subextractor.

In order to output a nonconstant bit, as required by a 1 output bit disperser,
Barak et al. assumed that the source X has some more structure. Not only should X
have a T -structure, but it is also required that left(XvB(T)) have its own tree-structure.
In particular, somewhere in the left block of XvB(T) there should be a second block-
source. Note that this extra structure required from X can be assumed with almost
no cost in parameters. Indeed, after applying the process from section 3.1 to X to
obtain a deficiency

√
k log n subsource X ′ of X that has a tree-structure, one can

simply apply the process again, this time to left(X ′vB(T)), to find a second deficiency√
k log n subsource of X with the desired structure.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC16-44 GIL COHEN

Having this “double block-source” structure, Barak et al. were able to carefully
tune the parameters of the challenge-response mechanism so that with some probabil-
ity, vB(T) will be convinced that XleftSon(vB(T)) contains a block-source, yet with some
probability it will fail to notice that. With some more delicate work, and based on the
fact that XvB(T) is a block-source, the fact that vB(T)’s decision is not constant can
be carried upward all the way to root(T) and in turn can be translated to an output
bit that is nonconstant.

3.3. The strategy for the rest of our construction. To carry the analysis of
our subextractor, we require even more structure from our sources than the structure
required by [6]. First, we require both X and Y to have a tree-structure. In previous
works [5, 6], the second source Y was used mainly to “locate the entropy” of the source
X, and the only assumption on Y was that it has a sufficient amount of entropy for
this purpose. We, however, will make use of the structure of Y as well.

𝑣𝑡𝑜𝑝(𝑇)

𝑣𝑚𝑖𝑑(𝑇)

𝑣𝑏𝑜𝑡(𝑇)

𝑟𝑜𝑜𝑡 𝑇

Fig. 2. The “triple block-source” structure of an entropy-tree.

Second, we need both X and Y to have a “triple block-source” structure (see
Figure 2). That is, we assume that X has a TX -structure with a node vtop(TX)
corresponding to the block-source Xvtop(TX). We then assume that left(Xvtop(TX)) has
its own tree-structure with a node vmid(TX) corresponding to a second block-source
Xvmid(TX) lying inside left(Xvtop(TX)). Finally, we require that left(Xvmid(TX)) have its
own tree-structure with a node vbot(TX) that corresponds to a third block-source
Xvbot(TX) that lies inside left(Xvmid(TX)). The same goes for Y . Namely, Y also has
a triple block-source structure. In particular, the entropy-tree of Y , denoted by TY ,
has nodes that we denote by utop(TY), umid(TY), and ubot(TY), analogous to vtop(TX),
vmid(TX), and vbot(TX) in TX .

We allow ourselves to change the definition of an entropy-tree given in the previous
section so that it will capture this “triple block-source” structure, but the reader
should not worry about these details at this point. For the formal definition of entropy-
trees and tree-structured sources, see section 6.

Given this structure of the sources, we are ready to give a high-level overview of
our construction. In the subsequent sections of the overview (sections 3.4 and 3.5), we
give further details. Let X be a TX -structured source and let Y be a TY -structured
source for some entropy-trees TX , TY . At the first step, the subextractor identifies
the entropy-path of TX and the entropy-path of TY using the algorithm of [6]. More

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RAMSEY GRAPHS STOC16-45

precisely, given the samples x ∼ X ,y ∼ Y , we compute two paths denoted by

pobserved(x, y) = v0(x, y), v1(x, y), . . . , vlog(n)−1(x, y),

qobserved(x, y) = u0(x, y), u1(x, y), . . . , ulog(n)−1(x, y).

This step must be done with some care. From technical reasons (related to the way
the error term behaves when moving to subsources), we cannot use x, y to first find
the entropy-path of TX and then to find the entropy-path of TY . Thus, in some sense,
the two paths must be computed simultaneously (see section 8.1 for more details).

At this point, ignoring some small error term, we have that there exist low-
deficiency subsources X ′ ⊂ X, Y ′ ⊂ Y , such that for any (x, y) ∈ supp(X ′, Y ′) it
holds that pobserved(x, y) (resp., qobserved(x, y)) contains the entropy-path of TX (resp.,
TY). In particular, we have that vdepth(vtop(TX))(X

′, Y ′) is fixed to vtop(TX), and the
same holds for vmid(TX), vbot(TX), as well as for utop(TY), umid(TY), and ubot(TY). To
keep the notation clean, we write X,Y for X ′, Y ′ in this proof overview. That is, we
assume that the entropy-paths are correctly identified on the tree-structured sources
themselves.

At the second step of the algorithm, we identify vmid(TX) with high probability
over subsources X ′ ⊂ X, Y ′ ⊂ Y . This sounds fantastic—having found vmid(TX),
we can simply output BExt(X ′vmid(TX), Y

′) which is close to uniform. Unfortunately,

however, the only way we know how to find vmid(TX) requires us to fix left(X ′vmid(TX)).

That is, once found, X ′vmid(TX) is no longer a block-source.

We elaborate on how to find vmid(TX) in section 3.4. Then in section 3.5, we show
how to determine the output of the subextractor even after losing the block-structure
of Xvmid(TX).

3.4. Finding vmid(TX). Given x, y ∈ {0, 1}n, the key idea we use for identifying
vmid(TX) on pobserved(x, y) lies in the design of a challenge that we call the node-path
challenge (see Figure 3).

The node-path challenge and vobserved
mid (x, y). Let v be a node in TX , and

let q = w0, . . . , wlog(n)−1 be a root-to-leaf path in TY . We define the challenge
NodePathCh(xv, yq) as the log(n)-rows Boolean matrix such that for i = 0, 1, . . . , log(n)
−1,

NodePathCh(xv, yq)i = BExt (ywi , xv) .

We define vobservedmid (x, y) to be the node v on pobserved(x, y) with the largest depth such
that

(3.3) Response
(
x, y,NodePathCh

(
xv, yqobserved(x,y)

))
= hasEntropy.

Informally speaking, based on the node-path challenge, a node on pobserved(x, y) uses
the path qobserved(x, y) to prove that it is vmid(TX).

Ideally, we would want to prove that vobservedmid (x, y) = vmid(TX) for any (x, y) ∈
supp(X,Y). By now we know that this is too much to ask, and in any case, it
suffices to prove that there exist low-deficiency subsources X ′ ⊂ X, Y ′ ⊂ Y such that
with high probability over (x, y) ∼ (X ′, Y ′) it holds that vobservedmid (x, y) = vmid(TX).
Unfortunately, we will not be able to prove that either. What we will be able to show
is that there exist strings α, β such that the following holds. Define

Xα = X ′ |
(
X ′leftSon(vmid(TX)) = α

)
,

Yβ = Y ′ |
(
Y ′leftSon(umid(TY)) = β

)
,

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC16-46 GIL COHEN

𝑝𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑥, 𝑦) 𝑞𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑥, 𝑦)

𝑣𝑡𝑜𝑝 𝑇𝑋

𝑣𝑚𝑖𝑑 𝑇𝑋

𝑣𝑏𝑜𝑡 𝑇𝑋

𝑢𝑡𝑜𝑝 𝑇𝑌

𝑢𝑚𝑖𝑑 𝑇𝑌

𝑢𝑏𝑜𝑡 𝑇𝑌
𝑣𝑖 𝑥, 𝑦

𝑢𝑖 𝑥, 𝑦
𝐵𝐸𝑥𝑡 𝑦𝑢𝑖 𝑥,𝑦 , 𝑥𝑣𝑖(𝑥,𝑦)

Fig. 3. The node-path challenge.

and let imid(TX) denote the depth of vmid(TX).
The way we choose α, β is with respect to the error that we constantly ignore

throughout this overview. Thus, assume that α, β are chosen in such a way that allows
us to continue ignoring the error (this is done by a simple averaging argument). No
further requirement is posed on α, β.

Proposition 3.1. There exist low-deficiency subsources Xα,β ⊂ Xα, Yα,β ⊂ Yβ,
such that with high probability over (x, y) ∼ (Xα,β , Yα,β), it holds that

∀i > imid(TX) Response
(
x, y,NodePathCh

(
xvi(x,y), yqobserved(x,y)

))
= fixed,

Response
(
x, y,NodePathCh

(
xvimid(TX)(x,y), yqobserved(x,y)

))
= hasEntropy.

Note that by the way we defined vobservedmid (x, y), Proposition 3.1 yields that
vobservedmid (x, y) = vmid(TX) with high probability over (x, y) ∼ (Xα,β , Yα,β). In particu-
lar, this gives us an algorithm for computing vmid(TX)—simply go up the computed
path pobserved(x, y) until a node v is found for which (3.3) holds. In the rest of this
section we prove Proposition 3.1.

The challenges of descendants of vmid(TX) on pobserved(x, y) are properly
responded to. Proposition 3.1 has two parts. First, it states that the node-path
challenges associated with nodes below vimid(TX)(x, y) on the path pobserved(x, y) are
responded to with high probability over x, y that are sampled from some low-deficiency
subsources of Xα, Yβ . Second, Proposition 3.1 states that the node-path challenge
associated with vimid(TX)(x, y) is left unresponded to with high probability over the
samples.

Recall that, ignoring a small error term, we assume that vimid(TX)(x, y) = vmid(TX).

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RAMSEY GRAPHS STOC16-47

Let us first consider the nodes below vmid(TX) on pobserved(x, y). Naturally, we want
to use the challenge-response mechanism. For that we must find low-deficiency sub-
sources X ′α ⊂ Xα, Y ′β ⊂ Yβ such that for all i > imid(TX), the challenge

(3.4) NodePathCh
(

(X ′α)vi(X′α,Y ′β), (Y
′
β)qobserved(X′α,Y ′β)

)
is fixed to a constant. As was done in the analysis of the toy algorithm from section 2.4,
to this end it is enough to show that the random variable

NodePathCh
(
(X ′α)vi(X′α,Yβ), (Yβ)qobserved(X′α,Yβ)

)
is a deterministic function of Yβ . Indeed, in such a case and since the challenge consists
of a relatively small number of bits, we can apply Fact 2.5 to find a low-deficiency
subsource Y ′β ⊂ Yβ such that the random variable in (3.4) is fixed to a constant.

For i > imid(TX), our starting point is the random variable

NodePathCh
(
(Xα)vi(Xα,Yβ), (Yβ)qobserved(Xα,Yβ)

)
.

To make this random variable depend solely on Yβ , by moving to a subsource of Xα,
we need to take care of all three appearances of Xα. We start with qobserved(Xα, Yβ).

Claim 3.2. There exists a deficiency log n subsource X ′α ⊂ Xα such that
qobserved(X

′
α, Yβ) is fixed to a constant.

Proof. Let ibot(TY) denote the depth of ubot(TY). To prove the claim, we first
recall that the path qobserved(Xα, Yβ) contains the entropy-path of TY . In particular,
we have that the nodes u0(Xα, Yβ), . . . , uibot(TY)(Xα, Yβ) are fixed. It is left to argue
that there is a low-deficiency subsource X ′α ⊂ Xα such that the remaining nodes
uibot(TY)+1(X ′α, Yβ), . . . , ulog(n)−1(X ′α, Yβ) are fixed as well.

Let us first consider the random node uibot(TY)+1(Xα, Yβ) that is the son of the
fixed node uibot(TY)(Xα, Yβ) = ubot(TY). According to (3.2), the node ubot(TY) decides
which of its two sons it favors, namely, which of its sons will be on qobserved(Xα, Yβ),
according to whether or not
(3.5)

Response
(
(Yβ)ubot(TY), Xα,GoodSonCh

(
(Yβ)leftSon(ubot(TY)), Xα

))
= hasEntropy.

By the definition of an entropy-tree, ubot(TY) is a descendant of leftSon(umid(TY)).
Further, by definition, (Yβ)leftSon(umid(TY)) is fixed to β. Thus, also (Yβ)ubot(TY) and
(Yβ)leftSon(ubot(TY)) are fixed to some constants. Therefore, the Boolean expression in
(3.5) is a deterministic function of Xα. By applying Fact 2.5, we obtain a deficiency 1
subsource X ′ of Xα such that the Boolean expression in (3.5) is fixed. In particular,
uibot(TY)+1(X ′, Yβ) is fixed to a constant.

At this point we can apply the same argument to ibot(TY) + 2. Indeed, we have
that uibot(TY)+1(X ′, Yβ) is fixed to a constant and all appearances of Yβ in the Boolean
expression that is analogous to (3.5) are again fixed to constants for the same reason
as before. Since this process terminates after at most log n steps and since in each
iteration we move to a deficiency 1 subsource of the previous obtained subsource, the
claim follows.

Given Claim 3.2, we turn to showing that for all i > imid(TX),

(3.6) NodePathCh
(
(X ′α)vi(X′α,Yβ), (Yβ)qobserved(X′α,Yβ)

)D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC16-48 GIL COHEN

is a deterministic function of Yβ . By the discussion above, this will prove the first
part of Proposition 3.1.

By Claim 3.2, we already know that qobserved(X
′
α, Yβ) is fixed to a constant. Thus,

it suffices to show that (X ′α)vi(X′α,Yβ) is a deterministic function of Yβ for all i >
imid(TX). By an argument similar to the one used in the proof of Claim 3.2, one can
show that for any such i, vi(X

′
α, Yβ) is a deterministic function of Yβ . Note further

that, by the definition of an entropy-tree, since i > imid(TX), we have that vi(X
′
α, Yβ)

is always (that is, for every (x, y) ∈ supp(X ′α, Yβ)) a descendant of leftSon(vmid(TX)).
Since (X ′α)leftSon(vmid(TX)) is fixed to a constant, we conclude that (X ′α)vi(X′α,Yβ) is
indeed a deterministic function of Yβ .

By the discussion above, we are now in a position to apply Fact 2.5 to obtain a
low-deficiency subsource Y ′β ⊂ Yβ such that

NodePathCh
(

(X ′α)vi(X′α,Y ′β), (Y
′
β)qobserved(X′α,Y ′β)

)
is fixed to a constant. We can then apply the challenge-response mechanism and
conclude that there exist low-deficiency subsources Xα,β ⊂ X ′α, Yα,β ⊂ Y ′β such that
for any (x, y) ∈ supp((Xα,β , Yα,β)), it holds that

∀i > imid(TX) Response
(
x, y,NodePathCh

(
xvi(x,y), yqobserved(x,y)

))
= fixed.

The challenge of vmid(TX) is left unresponded to. To prove Proposition 3.1,
it is left to show that the node-path challenge associated with vmid(TX) is unre-
sponded to. More precisely, it suffices to show that with high probability over
(x, y) ∼ (Xα,β , Yα,β), it holds that

Response
(
x, y,NodePathCh

(
xvmid(TX), yqobserved(x,y)

))
= hasEntropy.

Since utop(TY) is on the path qobserved(x, y) for all (x, y) ∈ supp(Xα,β , Yα,β), the matrix

NodePathCh
(
(Xα,β)vmid(TX), (Yα,β)qobserved(Xα,β ,Yα,β)

)
contains the row

(3.7) BExt
(
(Yα,β)utop(TY), (Xα,β)vmid(TX)

)
.

Since Xvmid(TX) is a block-source, (Xα)vmid(TX) has a significant amount of entropy.
Indeed, Xα is obtained from X by fixing XleftSon(vmid(TX)) = left(Xvmid(TX)). Since
Xα,β is a low-deficiency subsource of Xα, Fact 2.5 then implies that (Xα,β)vmid(TX)

also has a significant amount of entropy.
We now observe that (Yα,β)utop(TY) is a block-source. Indeed, Yutop(TY) is a block-

source and Yβ is obtained from Y by fixing YleftSon(umid(TY)). Since Yumid(TY) is a block-
source, this fixing leaves some entropy in (Yβ)umid(TY). Recall further that (Yβ)umid(TY)

lies inside left((Yβ)utop(TY)) as umid(TY) is a descendant of leftSon(utop(TY)). Thus,
(Yα,β)utop(TY) is a block-source.

Consider now any low-deficiency subsources X̂ ⊂ Xα,β , Ŷ ⊂ Yα,β . By Fact 2.5

and by Lemma 2.6 we have that X̂vmid(TX) has a significant amount of entropy and

that Ŷutop(TY) is a block-source (with some deterioration in parameters). Thus, for

any low-deficiency subsources X̂, Ŷ of Xα,β , Yα,β , respectively, we have that the
challenge matrix associated with vmid(TX) contains a row that is close to uniform.
In particular, this matrix is close to having high entropy. Thus, by the challenge-
response mechanism, we have that the node-path challenge associated with vmid(TX)
is left unresponded to with high probability over (x, y) ∼ (Xα,β , Yα,β), as desired.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RAMSEY GRAPHS STOC16-49

3.5. Determining the output. At the last step of the algorithm, we compute
the output of the subextractor that is defined as

SubExt(x, y) = BExt
(
xvobservedmid (x,y) ◦ x, y

)
,

where by xvobservedmid (x,y) ◦ x we denote the block-source with the first block xvobservedmid (x,y)

and the second block that equals x. Technically, we need to append the first block
with zeros so that both blocks will have the same length, and also append y with
zeros, but we ignore such minor technicalities in this section.

There are two potential problems with applying BExt the way we do above. First,
we see that the block-source fed to BExt depends on the sample y, which is problem-
atic since y is used as a sample from the weak-source as well. This, however, is a
nonissue. Indeed, recall that with high probability over (x, y) ∼ (Xα,β , Yα,β) it holds
that vobservedmid (x, y) = vmid(TX), and so ignoring a small error, the computation of the
extractor BExt above is the same as

BExt
(
xvmid(TX) ◦ x, y

)
.

Now that we have shown that there are no dependencies between the two samples
fed to BExt, we only need to make sure that the first sample is indeed coming from a
block-source when sampling (x, y) ∼ (Xα,β , Yα,β).

To see why this is true, recall that vmid(TX) is a descendant of leftSon(vtop(TX))
and that Xvtop(TX) is a block-source. Since Xα,β is obtained from X by fixing
XleftSon(vmid(TX)) (and by moving to low-deficiency subsources) and since Xvmid(TX)

is a block-source, we have that (Xα,β)vtop(TX) is also a block-source. Therefore,
(Xα,β)vmid(TX) ◦Xα,β is also a block-source. This shows that the application of BExt
above is valid, and that the output is close to uniform with high probability over
(Xα,β , Yα,β).

4. Preliminaries.

4.1. Standard (and less standard) notations and definitions. The loga-
rithm in this paper is always taken base 2. For every natural number n ≥ 1, define
[n] = {1, 2, . . . , n}.

Strings and matrices. Let n be an even integer. Let x ∈ {0, 1}n. For i ∈ [n], we
let xi denote the ith bit of x. For ∅ 6= I ⊆ [n], we let xI denote the projection of
x to the coordinate set I. That is, if I = {i1, . . . , im} with i1 < i2 < · · · < im then
xI = xi1xi2 · · ·xim . We denote by left(x) the n/2 leftmost bits of x and by right(x) the
n/2 rightmost bits of x. That is, left(x) = x1 · · ·xn/2 and right(x) = x(n/2)+1 · · ·xn.
We denote the concatenation of two strings x, y by x ◦ y. The length of x is denoted
by |x|. Given an r × n matrix x, for i = 0, 1, . . . , r − 1, we let xi denote row i of x.
Note that we start the row numbering from 0.

Trees. Let T be a complete rooted binary tree. We denote the root of T by
root(T). Throughout the paper we consider trees where some of the nodes are labeled
by labels from a ground set L. If v is a labeled node in a tree T , we denote its
label by label(v). If v is a nonleaf in T , we denote the left and right sons of v by
leftSon(v), rightSon(v), respectively. If v is not the root of T , parent(v) denotes the
(unique) parent of v. The depth of T is denoted by depth(T). The depth of a node
v in T , denoted by depth(v), is the distance in edges from root(T) to v. Note that
depth(root(T)) = 0.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC16-50 GIL COHEN

Random variables and distributions. We sometimes abuse notation and syntacti-
cally treat a random variable and its distribution as equal. Let X,Y be two random
variables. We say that Y is a deterministic function of X if the value of X determines
the value of Y . Namely, there exists a (deterministic) function f such that Y = f(X).
Throughout the paper, we mostly use capital letters to denote random variables.

Associating strings with trees. Let n be a power of 2 and let x ∈ {0, 1}n. The
tree that is associated with x, denoted by Tx, is a depth log n complete rooted binary
tree, where with each node v of Tx we associate a substring xv of x as follows:

• xroot(T) = x;

• For v 6= root(T), if v is the left son of its parent, then xv = left
(
xparent(v)

)
;

otherwise, xv = right
(
xparent(v)

)
.

Statistical distance. The statistical distance between two distributions X,Y on a
common domain D is defined by

SD (X,Y) = max
A⊆D

{|Pr[X ∈ A]−Pr[Y ∈ A] |} .

If SD(X,Y) ≤ ε we say that X is ε-close to Y and write X ∼ε Y .
Min-entropy. The min-entropy of a random variable X is defined by

H∞(X) = min
x∈supp(X)

log

(
1

Pr[X = x]

)
.

If X is supported on {0, 1}n, we define the min-entropy rate of X by H∞(X)/n. In
such a case, if X has min-entropy k or more, we say that X is an (n, k)-weak-source
or simply an (n, k)-source.

In some cases we will consider a random variable X that is ε-close, in statistical
distance, to some k-source Y , though X itself might have very low entropy. In such
case we sometimes say that X is ε-close to having min-entropy k and write Hε

∞(X) ≥
k. This notion is sometimes referred to as smooth min-entropy in the literature (see,
e.g., [39]).

4.2. Li’s block-source–weak-source extractor. Let X be a random variable
on n bit strings, and assume n is even. We say that X is an (n, k)-block-source if the
following hold:

• H∞(left(X)) ≥ k.
• For any x ∈ supp(left(X)) it holds that H∞(right(X) | left(X) = x) ≥ k.

We sometimes omit the length n of X and say that X is a k-block-source.
In a recent breakthrough, Li [30] gave a construction of an extractor for two

n-bit sources, where the first source is a polylog(n)-block-source and the second is
a weak-source with min-entropy polylog(n). Our construction heavily relies on Li’s
extractor.

Theorem 4.1 (see [30]). There exists a universal constant γ > 0 such that the
following holds. For all integers n, k with k ≥ log12 n, there is a poly(n)-time com-
putable function

BExt : {0, 1}n × {0, 1}n → {0, 1}m

such that if X is a k-block-source, where each block is on n/2 bits, and Y is an
independent (n, k)-source, then

SD ((BExt(X,Y), Y), (Um, Y)) ≤ ε,

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RAMSEY GRAPHS STOC16-51

and

SD ((BExt(X,Y), X), (Um, X)) ≤ ε,

where m = 0.9k and ε = 2−k
γ

.

We remark that using results for [14], one can improve the required entropy

k = log12 n in Theorem 4.1 to Ω̃(log7 n).
Let t < n be even integers. We sometimes apply BExt on strings x ∈ {0, 1}t and

y ∈ {0, 1}n and write BExt(x, y). Formally, we actually compute BExt(x′, y) where
x′ is obtained by adding (n − t)/2 zeros before and after x. This way of padding x
preserves the block-structure of x.

4.3. Subsources. The notion of a subsource was first explicitly introduced and
studied by Barak et al. [5]. We start by giving the definition of a subsource and then
collect some facts about subsources.

Definition 4.2 (subsource). Given random variables X and X ′ on {0, 1}n, we
say that X ′ is a deficiency d subsource of X and write X ′ ⊂ X if there exists a set
A ⊆ {0, 1}n such that X ′ = X | (X ∈ A) and Pr[X ∈ A] ≥ 2−d. More precisely,
for every a ∈ A, Pr[X ′ = a] is defined by Pr[X = a | X ∈ A], and for a 6∈ A,
Pr[X ′ = a] = 0.

We make frequent use of the following simple facts about subsources.

Fact 4.3 ([6], Fact 3.11). If X is an (n, k)-source and X ′ is a deficiency d
subsource of X, then X ′ is an (n, k − d)-source.

Fact 4.4 ([6], Fact 3.13). Let X be a random variable on n-bit strings. Let
f : {0, 1}n → {0, 1}` be a function. Then, there exist c ∈ {0, 1}` and a deficiency `
subsource X ′ ⊂ X such that f(x) = c for every x ∈ supp(X ′).

Lemma 4.5 (see [6, Lemma 3.15]). Let X be a random variable that is ε-close
to having min-entropy k, with ε < 1/4. Then, there exists a deficiency 2 subsource
X ′ ⊂ X that has min-entropy k − 3.

Lemma 4.6 (see [6, Corollary 3.19]). Let X be a k-block-source, and let X ′ be a
deficiency d subsource of X. Then, X ′ is ε-close to a k−d− log(1/ε)−1 block-source.

5. The challenge-response mechanism. In this section we further abstract
the challenge-response mechanism that was introduced in [5] and refined by [6]. This
abstraction will make it easier for us to apply the mechanism in our proofs. The
reader is referred to section 2 for an intuitive-level overview of the challenge-response
mechanism.

Theorem 5.1. For integers ` < n, there exists a poly(n)-time computable func-
tion

Resp : {0, 1}n × {0, 1}n × {0, 1}` → {fixed, hasEntropy}

with the following property. For any two independent n-bit sources X,Y that are
1/4-close to having min-entropy Ω(log10 n), and for any function Challenge : {0, 1}n×
{0, 1}n → {0, 1}`, the following hold:

• If Challenge(X,Y) is fixed to a constant, then there exist deficiency 2` + 2
subsources X ′ ⊂ X, Y ′ ⊂ Y , such that

Pr
(x,y)∼(X′,Y ′)

[Resp (x, y,Challenge(x, y)) = fixed] = 1.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC16-52 GIL COHEN

• If for any deficiency 20` subsources X̂ ⊂ X, Ŷ ⊂ Y it holds that Challenge(X̂, Ŷ)
is ε-close to having min-entropy k, then

Pr
(x,y)∼(X,Y)

[Resp (x, y,Challenge(x, y)) = fixed] ≤ (2−k + ε) · poly(n).

For the proof of Theorem 5.1 we make use of the following theorem.

Theorem 5.2 (see [6, Theorem 4.3]). There exist universal constants γ, c such
that for any integer n, there exists a poly(n)-time computable function

SE : {0, 1}n × {0, 1}n →
(
{0, 1}`

)r
,

with ` ≤ γk and r = nc, such that the following holds. For any two independent
(n, log10 n)-sources X,Y , the following hold.

• Let c be any fixed ` bit string. Then, there exist subsources Xc ⊂2` X, Yc ⊂2`

Y and an index i ∈ [r] such that Pr [SE(Xc, Yc)i = c] = 1.
• Given any particular row index i ∈ [r], (X,Y) is 2−10`-close to a convex

combination of subsources such that for every (X̂, Ŷ) in the combination it
holds that

– X̂ is a deficiency 20` subsource of X,
– Ŷ is a deficiency 20` subsource of Y ,
– X̂, Ŷ are independent, and
– SE(X̂, Ŷ)i is fixed to a constant.

Proof of Theorem 5.1. We start by describing the algorithm for computing the
response function Response(x, y,Challenge(x, y)) as described in [5]. The algorithm
computes SE(x, y), where the output length of SE is set to `. The algorithm then
checks whether or not Challenge(x, y) appears as a row in SE(x, y). If so, the algorithm
outputs fixed; otherwise it outputs hasEntropy.

We turn to the analysis. Assume first that Challenge(X,Y) is fixed to some
constant c. By Lemma 4.5, there exist deficiency 2 subsources X ′ ⊂ X, Y ′ ⊂ Y
such that X ′, Y ′ have min-entropy Ω(log10 n). Note that Challenge(X ′, Y ′) is also
fixed to c. By Theorem 5.2, there exist deficiency 2` subsources Xc ⊂ X ′, Yc ⊂ Y ′

and an index i ∈ [r] such that with probability 1 over (x, y) ∼ (Xc, Yc) it holds that
Challenge(x, y) = SE(x, y)i, thus proving the first part of the theorem.

Assume now that for any deficiency 20` subsources X̂ ⊂ X, Ŷ ⊂ Y , it holds that
Challenge(X̂, Ŷ) is ε-close to having min-entropy k. Consider any fixed i ∈ [r]. By
Theorem 5.2, (X,Y) is 2−10`-close to a convex combination of subsources such that
every (X̂, Ŷ) in the combination has the four listed properties. Since Challenge(X̂, Ŷ)
is ε-close to having min-entropy k and since SE(X̂, Ŷ)i is fixed, we have that

Pr
(x,y)∼(X̂,Ŷ)

[Challenge(x, y) = SE(x, y)i] ≤ 2−k + ε.

Accounting for the distance from (X,Y) to the convex combination,

Pr
(x,y)∼(X,Y)

[Challenge(x, y) = SE(x, y)i] ≤ 2−k + ε+ 2−10`.

Therefore, by the union bound over all i ∈ [r],

Pr
(x,y)∼(X,Y)

[∃i ∈ [r] Challenge(x, y) = SE(x, y)i] ≤ (2−k + ε+ 2−10`)r.

As r = poly(n) and since k ≤ `, the proof follows.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RAMSEY GRAPHS STOC16-53

6. Entropy-trees and tree-structured sources. In this section we define
entropy-trees and tree-structured sources. These are variants of notions that were
introduced in [6]. Then, in Proposition 6.5, we show that any weak-source has a
low-deficiency subsource that is a tree-structured source.

Definition 6.1 (entropy-trees). An entropy-tree T is a complete rooted binary
tree where some of the nodes of the tree are labeled by one of the following labels:
F,H,Btop,Bmid,Bbot, according to the following set of rules:

• label(root(T)) ∈ {H,Btop}.
• There is exactly one node in T that is labeled by Btop, one node that is la-

beled by Bmid, and one node labeled by Bbot, denoted by vtop(T), vmid(T),
and vbot(T), respectively. Further, vmid(T) is a (possibly immediate) de-
scendant of leftSon(vtop(T)), and vbot(T) is a (possibly immediate) descen-
dant of leftSon(vmid(T)). We denote itop(T) = depth(vtop(T)), imid(T) =
depth(vmid(T)), and ibot(T) = depth(vbot(T)).

• If v is a nonleaf that has no label or otherwise is labeled by F or Bbot, then
both its sons have no label.

• If v is a nonleaf labeled by H, then leftSon(v) has a label. Further,
– If label(leftSon(v)) = F, then rightSon(v) has a label different than F.
– If label(leftSon(v)) 6= F, then the right son of v has no label.

• If v is a nonleaf labeled by Btop or Bmid, then leftSon(v) has a label. Further,
– If label(leftSon(v)) = F, then label(rightSon(v)) = H.
– If label(leftSon(v)) 6= F, then the right son of v has no label.

Definition 6.2 (entropy-path). Let T be an entropy-tree. The entropy-path of
T is the path that starts at root(T) and ends at vbot(T). We denote the nodes on this
path by root(T) = v0(T), v1(T), . . . , vibot(T)(T) = vbot(T). We say that a path p in T
contains the entropy-path of T if p starts at root(T) and goes through vbot(T).

In our proofs we oftentimes consider two sources X,Y , each having its own
tree-structure. For ease of reading, we use v to denote a node in one entropy-
tree and u to denote a node in the other entropy-tree. For example, say X has
a TX -structure and Y has a TY -structure, for some entropy trees TX , TY . Then,
the entropy-path of TX is denoted by v0(TX), v1(TX), . . . , vibot(TX)(TX) = vbot(TX),
whereas u0(TY), u1(TY), . . . , uibot(TY)(TY) = ubot(TY) is the entropy-path of the entropy-
tree TY .

Definition 6.3 (good son). Let T be an entropy-tree and let v 6= vbot(T) be an
ancestor of vbot(T). The good son of v is defined to be the unique son of v that is an
ancestor of vbot(T).

We note that the entropy-path of an entropy-tree T is the path obtained by
following the good son of each node starting from root(T) until reaching vbot(T).

Definition 6.4 (tree-structured sources). Let T be an entropy-tree. We say that
an n-bit random variable X has a T -structure with parameters (k, ε) if the following
hold. For any node v in T ,

• If label(v) = F, then Xv is fixed to a constant.
• If label(v) = H, then the following hold:

– If v is an ancestor of vtop(T), then Hε
∞(Xv) ≥ k.

– If v is a descendant of vtop(T) and an ancestor of vmid(T), then Hε
∞(Xv) ≥√

k.
– If v is a descendant of vmid(T), then Hε

∞(Xv) ≥ k1/4.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC16-54 GIL COHEN

• Xvtop is ε-close to a
√
k-block-source.

• Xvmid
is ε-close to a k1/4-block-source.

• Xvbot is ε-close to a k1/8-block-source.

By a simple counting argument one can show that most weak-sources do not
have a tree-structure (at least not with nontrivial parameters). Nevertheless, in the
following proposition we show that any weak-source has a low-deficiency subsource
that has a tree-structure. A similar statement appears in Lemma 6.10 of [6].

Proposition 6.5. Let X be an (n, k)-source with k = ω(log8 n). Then, there ex-
ists a deficiency O(

√
k log n) subsource of X that has a T -structure, for some entropy-

tree T , with parameters (Ω(k), 2−Ω(k1/4)).

In the rest of this section we prove Proposition 6.5. We start by giving a proof
for a special case of the “fixing entropies lemma” by Barak et al. [6] (see their Lemma
3.20), which will be sufficient for our needs.

Lemma 6.6. Let X be an (n, k)-source. Let 0 < τ1 < τ2 < n be any two numbers.
Set τ0 = 0 and τ3 = n. Then, there exist a deficiency 2 subsource X ′ ⊂ X and an
index i ∈ {0, 1, 2} such that the following hold:

• For any c ∈ supp(left(X ′)), H∞ (right(X ′) | left(X ′) = c) ∈ [τi, τi+1].
• H∞(left(X ′)) + τi+1 ≥ k − 2.

Proof. Define a function f : supp(left(X))→ {0, 1, 2} as follows:

f(c) =

 0, H∞(right(X) | left(X) = c) ∈ [τ0, τ1);
1, H∞(right(X) | left(X) = c) ∈ [τ1, τ2);
2, H∞(right(X) | left(X) = c) ∈ [τ2, τ3].

By Fact 4.4 (where we identify the range {0, 1, 2} with an arbitrary subset of {0, 1}2),
there exists a deficiency 2 subsource X ′ ⊂ X for which f(X ′) is fixed to some constant
i ∈ {0, 1, 2}. The first property of the lemma readily follows.

As for the second item, let t = H∞(left(X ′)). Then, there exists x ∈ supp(X ′)
such that Pr[X ′ = x] ≥ 2−(t+τi+1), and so H∞(X ′) ≤ t + τi+1. On the other
hand, since X ′ is a deficiency 2 subsource of X, Fact 4.3 implies that H∞(X ′) ≥
H∞(X)− 2 ≥ k − 2, which concludes the proof.

Next we prove a lemma that is analogous to the two-types lemma by Barak et
al. (see [6, Lemma 6.8]).

Lemma 6.7 (three-types lemma). For any (n, k)-source X and an integer b <
k/2− 1, there exists a deficiency b + 2 subsource X ′ ⊂ X such that (at least) one of
the following holds:

• X ′ is a b-block-source.
• H∞(left(X ′)) ≥ k − b− 2.
• left(X ′) is fixed to a constant and H∞(right(X ′)) ≥ k − b− 2.

Proof. Set τ1 = b, τ2 = k− b− 2, and note that by our assumption on b, τ1 < τ2.
Apply Lemma 6.6 to obtain a deficiency 2 subsource X ′′ ⊂ X and i ∈ {0, 1, 2}. We
consider three cases, according to the value of i.

• If i = 0, then by the second item of Lemma 6.6, H∞(left(X ′′)) + τ1 ≥ k − 2.
Thus, H∞(left(X ′′)) ≥ k − b − 2. We then take X ′ = X ′′ to conclude the
proof.

• If i = 1, then for any fixing of left(X ′′), we have that H∞(right(X ′′)) ∈
[τ1, τ2] = [b, k − b − 2]. By the second item of Lemma 6.6, H∞(left(X ′′)) ≥

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RAMSEY GRAPHS STOC16-55

k − 2 − τ2 = b. Therefore, X ′′ is a b-block-source, and we take X ′ = X ′′ to
conclude the proof.

• By Lemma 6.6, if i = 2, then for any fixing of left(X ′′), we have that
H∞(right(X ′′)) ≥ τ2 = k − b − 2. Let x be an element that maximizes
the probability of the event {left(X ′′) = x}. Let X ′ = X ′′ | {left(X ′′) = x}
be a subsource of X ′′. This costs another b in deficiency.

We are now ready to prove Proposition 6.5.

Proof of Proposition 6.5. Let T be a depth log n complete rooted binary tree.
During the proof, we label some of the nodes of T , following the rules of entropy-
trees, such that eventually we will find a low-deficiency subsource of X that has a
T -structure. We start by applying Lemma 6.7 with b =

√
k to obtain a deficiency

b+ 2 subsource X ′ ⊂ X for which one of the following holds:
• X ′ is a b-block-source.
• H∞(left(X ′)) ≥ k − b− 2.
• left(X ′) is fixed to a constant and H∞(right(X ′)) ≥ k − b− 2.

If the first case occurs, we label root(T) by Btop. Otherwise, if the second case occurs,
we label root(T) by H and continue recursively to the source left(X ′) with the tree
rooted at leftSon(root(T)). Otherwise, we are guaranteed that the third case happens.
We then label root(T) by H and leftSon(root(T)) by F and continue recursively to the
source right(X ′) with the tree rooted at rightSon(root(T)). We continue in this manner
until a node is labeled by Btop.

Note that after r− 1 recursive calls occur without labeling any node by Btop, the
rth recursive call considers an (n′, k′)-source, with n′ = n · 2−r and k′ ≥ k− r(b+ 2).
Note further that if k′ − b− 2 > 0.5n′, the only case that can occur in Lemma 6.7 is
the first case, in which case the process above will label a node by Btop. In particular,

by our choice b =
√
k, the process can continue for at most log(n/k) + 2 recursive

calls. Thus, a deficiency
√
k · log n subsource X ′ ⊂ X will be found and a node of T

will be labeled by Btop, such that the block of X ′ that corresponds to this node is a√
k-block-source. We denote this node by vtop; namely, X ′vtop is a

√
k-block-source.

We now apply the same process to left(X ′vtop) with b′ = k1/4. This time, once
a b′-block-source is found, we label the corresponding node vmid by Bmid. Using an
argument similar to the one used above, and since left(X ′vtop) has min-entropy at

least b =
√
k, one can show that as k = ω(log4 n) there exists a deficiency k1/4 log n

subsource X ′′ ⊂ X ′ such that X ′′vmid
is a b′-block-source.

Finally, we apply the process to left(X ′′vmid
) with b′′ = k1/8. Once a b′′-block-source

is found, we label the corresponding node vbot by Bbot. One can show that there exists
a deficiency k1/8 log n subsource X ′′′ ⊂ X ′′ such that X ′′′vbot is a b′′-block-source.

For every node v that is labeled by H, which is an ancestor of vtop, it holds that

H∞(Xv) ≥ k− (b+ 2) · 2 log n ≥ k/2. Since X ′′′ is a deficiency O(
√
k log n) subsource

of X, Fact 4.3 implies that H∞(X ′′′v) ≥ k/3. Similarly, for every node v that is
labeled by H, which is a descendant of vtop and an ancestor of vmid, it holds that

H∞(X ′′′v) ≥ b− (b′+ 2) log n− 6 log n = Ω(
√
k). Further, for any node v labeled by H

that is a descendant of vmid and an ancestor of vbot, H∞(X ′′′v) ≥ b′−b′′ log n = Ω(k1/4).
As for the block-sources, recall that Xvtop is a b =

√
k-block-source. Since X ′′′ is

a deficiency O(k1/4 log n) subsource of X, Lemma 4.6 implies that X ′′′vtop is 2−Ω(
√
k)-

close to an Ω(
√
k)-block-source. Similarly, X ′′′vmid

is 2−Ω(k1/4)-close to an Ω(k1/4)-block-

source. Finally, X ′′′vbot is an Ω(k1/8)-block-source.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC16-56 GIL COHEN

7. The two-source subextractor. In this section we describe our two-source
subextractor. Let n be a power of 2, and let ` be a parameter. On input x, y ∈ {0, 1}n,
the computation of the subextractor is done in three steps.

Step 1: Identifying the entropy-paths. Informally speaking, the goal of
the first step of the algorithm is to identify the entropy-paths of the entropy-trees
from which the samples x, y were presumably sampled. This step is a variant of a
component from the two-source disperser by [6]. For this step we make use of the
challenge-response mechanism. Thus, algorithmically, we start by setting up suitable
challenges.

Setting the good son challenges. Recall that with the n-bit strings x, y we associate
depth log n complete rooted binary trees that are denoted by Tx, Ty, respectively (see
section 4). With each node v of Tx, we associate a log(n)×` Boolean matrix, denoted
by GoodSonCh(xv, y), computed from leaves to root, recursively, as follows. All the
entries in rows 0, . . . , depth(v)−1 of GoodSonCh(xv, y) are fixed to 0. Row depth(v) of
GoodSonCh(xv, y) contains BExt(xv, y), where BExt is the extractor from Theorem 4.1
set to output ` bits. If v is a nonleaf, rows depth(v) + 1, . . . , log(n) − 1 are copied
from the respective rows of GoodSonCh(xleftSon(v), y) or from the respective rows of
GoodSonCh(xrightSon(v), y) according to the following rule. If

Resp
(
xv, y,GoodSonCh

(
xleftSon(v), y

))
= fixed

then rows depth(v) + 1, . . . , log(n) − 1 of GoodSonCh(xv, y) are taken from the cor-
responding rows of GoodSonCh(xrightSon(v), y). Otherwise, these rows are taken from
the corresponding rows of GoodSonCh(xleftSon(v), y). In the first case we say that v
(x, y)-favors its right son, and in the second case we say that v (x, y)-favors its left
son.

Analogously, with each node u of Ty we associate a log(n) × ` Boolean
matrix, denoted by GoodSonCh(yu, x), defined recursively as follows. All entries
in rows 0, . . . , depth(u) − 1 of GoodSonCh(yu, x) are fixed to 0. Row depth(u) of
GoodSonCh(yu, x) contains BExt(yu, x). If u is a nonleaf, rows depth(u)+1, . . . , log(n)−
1 are copied from the respective rows of GoodSonCh(yleftSon(u), x) or from the respec-
tive rows of GoodSonCh(yrightSon(u), x) according to the following rule. If

Resp
(
yu, x,GoodSonCh

(
yleftSon(u), x

))
= fixed

then the remaining rows are taken from the corresponding rows of
GoodSonCh(yrightSon(u), x). Otherwise, the rows are taken from the corresponding
rows of GoodSonCh(yleftSon(u), x). In the first case we say that u (x, y)-favors its right
son, and in the second case we say that u (x, y)-favors its left son.

Computing the entropy-paths. Let v0(x, y), v1(x, y), . . . , vlog(n)−1(x, y) be the root-
to-leaf path in Tx such that vi(x, y) (x, y)-favors vi+1(x, y) for all i = 0, 1, . . . , log(n)−
2. Similarly, let u0(x, y), u1(x, y), . . . , ulog(n)−1(x, y) be the root-to-leaf path in Ty
such that ui(x, y) (x, y)-favors ui+1(x, y) for all i = 0, 1, . . . , log(n) − 2. We denote
v0(x, y), . . . , vlog(n)−1(x, y) by pobserved(x, y) and call this path the observed entropy-
path of Tx. Similarly, we denote the path u0(x, y), . . . , ulog(n)−1(x, y) by qobserved(x, y)
and call this path the observed entropy-path of Ty.

The computation done in Step 1. Given x, y ∈ {0, 1}n, in Step 1 the subextractor
computes pobserved(x, y) and qobserved(x, y). Note that this computation can be done in
poly(n)-time.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RAMSEY GRAPHS STOC16-57

Step 2: Identify vmid(TX). Given x, y, pobserved(x, y) and qobserved(x, y), at the
second step the algorithm computes a function we denote by vobservedmid (x, y). To this end
we make a second use of the challenge-response mechanism. Thus, algorithmically,
we start by setting suitable challenges.

The node-path challenges. Let `′ < ` be a parameter. Let v be a node in Tx
and let p = w0, . . . , wlog(n)−1 be a root-to-leaf path in Ty. The node-path challenge
associated with (v, p), that we denote by NodePathCh(xv, yp), is a log(n)× `′ Boolean
matrix defined as follows. For j = 0, . . . , log(n)− 1,

NodePathCh(xv, yp)j = BExt(ywj , xv),

where BExt is the extractor from Theorem 4.1 set to output `′ bits.
Computing vobservedmid (x, y). We define vobservedmid (x, y) to be the node v in pobserved(x, y)

with the largest depth such that

Response
(
x, y,NodePathCh

(
xv, yqobserved(x,y)

))
= hasEntropy.

If no such node exists we define v, arbitrarily, as root(TX). Note that vobservedmid (x, y)
can be computed in poly(n)-time.

Step 3: Determining the output. Given x, y, and vobservedmid (x, y) which was
computed in the previous step, the output of the subextractor is defined by

SubExt(x, y) = BExt
(
xvobservedmid (x,y) ◦ x, y

)
,

where xvobservedmid (x,y) ◦x is the block-source with first block xvobservedmid (x,y) and second block
equal to x. Technically, we need to append xvobservedmid (x,y) with zeros to obtain a length

|x| = n string. Similarly, we append y with n zeros to obtain a 2n-bit string.

Recap. We conclude this section by summarizing the three high-level steps in
the computation of the subextractor. On input x, y ∈ {0, 1}n:

1. Compute pobserved(x, y) and qobserved(x, y).
2. Compute vobservedmid (x, y).
3. Output BExt(xvobservedmid (x,y) ◦ x, y).

8. Analysis of the construction. In this section we prove Theorem 1.10 by
analyzing the algorithm from section 7. Recall that the algorithm is parameterized by
two parameters, denoted by ` and `′. For an error parameter ε we set `′ = c1 · log(n/ε)
for some suitable constant c1. We further set ` = c2`

′ · log2(n) for some suitable
constant c2. With this choice of parameters we prove the following theorem which
readily implies Theorem 1.10.

Theorem 8.1 (two-source subextractors). Let γ be the constant from Theorem 4.1.
Then, there exists a constant c such that the algorithm described in section 7 with the

choice of `, `′ above is a subextractor for outer-entropy kout = (log(n/ε))
O(1/γ)

and

inner-entropy kin = Ω(k
1/4
out) with m = Ω(k

1/4
out) output bits and error ε.

For ease of notation, throughout this section we denote kout by k. The proof
of Theorem 8.1 is done in three steps, following the three steps of the construction
from section 7. By Proposition 6.5, we may assume that X has a TX -structure
and that Y has a TY -structure for some entropy-trees TX , TY , each with parameters

(Ω(k), 2−Ω(k1/4)). This costs only O(
√
k log n) in deficiency.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC16-58 GIL COHEN

8.1. Analysis of Step 1. We start this section by proving the following claim.

Claim 8.2. There exist deficiency ` log2 n subsources XF ⊂ X, YF ⊂ Y with
the following property. For every node v in TX that is labeled by F it holds that
GoodSonCh((XF)v, YF) is fixed to a constant. Further, for every node u in TY that is
labeled by F it holds that GoodSonCh((YF)u, XF) is fixed to a constant.

Proof. Let v be a node in TX that is labeled by F. Since X has a TX -structure,
Xv is fixed to a constant, and so GoodSonCh(Xv, Y) is a deterministic function of
Y . Since GoodSonCh(Xv, Y) consists of ` log n bits, Fact 4.4 implies that there exists
a deficiency ` log n subsource Y ′ ⊂ Y such that GoodSonCh(Xv, Y

′) is fixed to a
constant. Repeating this argument for every v ∈ TX that is labeled by F, we get a
subsource YF ⊂ Y such that GoodSonCh(Xv, YF) is fixed to a constant for every v in
TX that is labeled by F. By the definition of an entropy-tree, there is at most one
node labeled by F in each level of TX and since depth(TX) = log n, we have that YF
is a deficiency ` log2 n subsource of Y .

As YF is a subsource of Y , for every node u in TY that is labeled by F it holds that
(YF)u is fixed to a constant. We now perform the analogous process on TY to obtain a
deficiency ` log2 n subsource XF ⊂ X such that for every node u in TY that is labeled
by F it holds that GoodSonCh((YF)u, XF) is fixed to a constant. Note that since XF

is a subsource of X, it also holds that GoodSonCh((XF)v, YF) is fixed to a constant
for every v in TX that is labeled by F. Thus, informally speaking, by performing the
analogous process to TY we have not “ruined” the desired property we obtained first
for TX .

Next we show that there exist low-deficiency subsources XFI ⊂ XF, YFI ⊂ YF (FI
stands for “fixed identified”), restricted to which, the algorithm correctly identifies
the nodes in TX , TY that are labeled by F.

Claim 8.3. There exist deficiency O(` log2 n) subsources XFI ⊂ XF, YFI ⊂ YF with
the following property. For every node v of TX that is labeled by F and for every node
u of TY that is labeled by F, it holds that

Pr [parent(v) (XFI, YFI)-favors v] = 0,

Pr [parent(u) (XFI, YFI)-favors u] = 0.

Proof. Let v be a node in TX that is labeled by F. We first note that by the
definition of an entropy-tree, root(TX) cannot be labeled by F, and so it is valid to
refer to parent(v). Further, by the definition of an entropy-tree, if a node is labeled
by F then it must be the left son of its parent. Hence, parent(v) (x, y)-favors v if and
only if

(8.1) Response
(
xparent(v), y,GoodSonCh

(
xleftSon(parent(v)), y

))
= hasEntropy.

By Claim 8.2, GoodSonCh((XF)v, YF) = GoodSonCh((XF)leftSon(parent(v)), YF) is
fixed to a constant. Thus, to apply the challenge-response mechanism to conclude
that (8.1) holds with probability 0 restricted to low-deficiency subsources of XF, YF,
we only need to show that both (XF)parent(v) and YF have a sufficient amount of en-

tropy. We start with YF. As YF is a deficiency ` log2 n subsource of Y and since
H∞(Y) = Ω(k), our choice of ` together with Fact 4.3 implies that H∞(YF) = Ω(k).

As for the entropy of (XF)parent(v), by the definition of entropy-trees and tree-
structured sources, since label(v) = F it holds that label(parent(v)) ∈ {H,Btop,Bmid}
and so Xparent(v) is 2−Ω(k1/4)-close to having min-entropy Ω(k1/4). Since XF is a

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RAMSEY GRAPHS STOC16-59

deficiency ` log2 n subsource of X we have that (XF)parent(v) is 2−Ω(k1/4)+` log2 n-close to

having min-entropy Ω(k1/4)−` log2 n. By our choice of `, we have that the expression
Ω(k1/4)− ` log2 n in the entropy and in the error term is Ω(k1/4), and so (XF)parent(v)

is 2−Ω(k/ log2 n)-close to having min-entropy Ω(k1/4).

As 2−Ω(k1/4) ≤ 1/4, Theorem 5.1 implies that there exist deficiency 2` log(n) + 2
subsources X ′ ⊂ XF, Y ′ ⊂ YF such that for any (x, y) ∈ supp((X ′, Y ′)), equation (8.1)
fails to hold. Thus, for any such (x, y) it holds that parent(v) does not (x, y)-favor v.

We repeat this argument for every node v in TX that is labeled by F and obtain
deficiency (2` log(n) + 2) · log n = O(` log2 n) subsources X ′′ ⊂ XF, Y ′′ ⊂ YF with the
property that for every v in TX that is labeled by F it holds that

Pr [parent(v) (X ′′, Y ′′)-favors v] = 0.

We can repeat the process above in such a way since the entropy of Y remains
large enough throughout the process, and furthermore, for all v labeled by one of
{H,Btop,Bmid} it holds that Xv remains close to having high min-entropy.

We now apply the same argument for every node u in TY that is labeled by F.
Since X ′′ and Y ′′ are deficiency O(` log2 n) subsources of XF, YF, respectively, we can
obtain deficiency O(` log2 n) subsources XFI ⊂ X ′′, YFI ⊂ Y ′′, such that for any node
u in TY that is labeled by F it holds that

Pr [parent(u) (XFI, YFI)-favors u] = 0.

We note that since XFI and YFI are subsources of X ′′, Y ′′, it also holds that for every
node v in TX that is labeled by F,

Pr [parent(v) (XFI, YFI)-favors v] = 0.

That is, we have not “ruined” the desired property we obtained first in TX when
working on TY . This concludes the proof of the claim.

Up to this point, we found deficiency O(` log2 n) subsources XFI ⊂ X and YFI ⊂ Y
such that the nodes labeled by F in TX , TY are correctly identified by the challenge-
response mechanism when applied to samples from XFI, YFI. Next we prove that with
high probability over (XFI, YFI), the entropy-paths in TX , TY are identified correctly
by the subextractor in the sense that the observed entropy-paths contain the entropy-
paths of the respective entropy-trees.

Claim 8.4. Except with probability 2−Ω(`) over (x, y) ∼ (XFI, YFI), it holds that

∀i ∈ {0, . . . , ibot(TX)} vi(x, y) = vi(TX),

∀i ∈ {0, . . . , ibot(TY)} ui(x, y) = ui(TY).

Proof. We prove the first equation in the statement of the claim. The proof of
the second equation is similar, and then the proof of the claim follows by the union
bound. We first observe that by the definition of an entropy-tree, for any ancestor
v 6= vbot(TX) of vbot(TX) it holds that label(leftSon(v)) = F if and only if rightSon(v)
is the good son of v. Indeed, on one hand, if leftSon(v) is labeled by F then leftSon(v)
cannot be an ancestor of vbot(TX) as all of leftSon(v)’s descendants have no label. On
the other hand, since v has a label and its label can only be one of H,Btop,Bmid, if its
left son is not labeled by F then rightSon(v) has no label, and so rightSon(v) cannot
be an ancestor of v as all of its descendants have no label.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC16-60 GIL COHEN

Ideally, given this observation, we would have liked to prove by a backward in-
duction on i = ibot(TX)− 1, . . . , 1, 0 that

Pr
(x,y)∼(XFI,YFI)

[∀j ∈ {i, . . . , ibot(TX)− 1} vj(TX) (x, y)-favors its good son] ≥ 1−2−Ω(`).

Indeed, note that the claim will then follow by considering i = 0. However, we need to
prove a stronger statement to have a stronger induction hypothesis, as otherwise we
will not be able to carry out the induction step. More precisely, set t = 20` log n. Let
εibot(TX)−1 = 2−Ω(`). For i = ibot(TX)−2, . . . , 1, 0, define εi = (2−Ω(`) +εi+1) ·poly(n).
We prove by a backward induction on i = ibot(TX)−1, . . . , 1, 0 that for any deficiency
i·t subsources X ′ ⊂ XFI, Y

′ ⊂ YFI, it holds that

Pr
(x,y)∼(X′,Y ′)

[∀j ∈ {i, . . . , ibot(TX)− 1} vj(TX) (x, y)-favors its good son] ≥ 1− εi.

We note that the claim follows by considering i = 0 as ε0 = 2−Ω(`) ·2O(log2 n) = 2−Ω(`).
We start with the base of the induction i = ibot(TX)− 1. Let X ′ ⊂ XFI, Y

′ ⊂ YFI
be deficiency (ibot(TX)− 1) · t subsources. Consider two cases according to the label
of leftSon(vibot(TX)−1(TX)). If label(leftSon(vibot(TX)−1(TX))) = F then by Claim 8.3,

Pr
(x,y)∼(XFI,YFI)

[
vibot(TX)−1(TX) (x, y)-favors its left son

]
= 0.

Since X ′, Y ′ are subsources of XFI, YFI, respectively, the same holds for (x, y) ∼
(X ′, Y ′). Moreover, as the good son of vibot(TX)−1(TX) is its right son, the basis
of the induction for this case follows.

Consider now the case label(leftSon(vibot(TX)−1(TX))) 6= F. By the observation
above, in this case, the good son of vibot(TX)−1(TX) is its left son, and so
leftSon(vibot(TX)−1(TX)) = vbot(TX). Thus, vibot(TX)−1(TX) (x, y)-favors its good son
if and only if

(8.2) Response
(
xvibot(TX)−1(TX), y,GoodSonCh

(
xvbot(TX), y

))
= hasEntropy.

To conclude the proof of the base case, it is enough to show that (8.2) holds with proba-
bility 1−2−Ω(`) over (x, y) ∼ (X ′, Y ′). To this end, recall that GoodSonCh(xvbot(TX), y)
contains BExt(xvbot(TX), y) as a row. By Theorem 5.1, it is enough to show that for

all deficiency t subsources X̂ ⊂ X ′, Ŷ ⊂ Y ′, it holds that BExt(X̂vbot(TX), Ŷ) is close
to uniform.

By Lemma 4.6, applied with δ = 2−Ω(k1/8), since X̂ is a deficiency ibot(TX) ·
t + O(` log2 n) = O(` log2 n) subsource of X and since Xvbot(TX) is 2−Ω(k1/4)-close to

an Ω(k1/8)-block-source, X̂vbot(TX) is 2−Ω(k1/8)-close to an Ω(k1/8)-block-source. Note
that we used the fact that

` · log2 n = c2`
′ · log4 n = c1c2 log(n/ε) · log4 n = O

(
k1/8

)
.

Now, as Ŷ is a deficiency O(` log2 n) subsource of Y , and since H∞(Y) ≥ k,
H∞(Ŷ) = Ω(k). Since k1/8 = Ω(log8 n), Theorem 4.1 and the remark following it

imply that BExt(X̂vbot(TX), Ŷ) is 2−Ω(kγ/8)-close to a uniform string on ` bits. Thus, by

Theorem 5.1, equation (8.2) holds except with probability (2−`+2−Ω(kγ/8))·poly(n) =
2−Ω(`), where we used our assumption on `.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RAMSEY GRAPHS STOC16-61

We now proceed to the induction step. Let 0 ≤ i < ibot(TX) − 1. Let X ′ ⊂ XFI,
Y ′ ⊂ YFI be deficiency i·t subsources. We want to show that

Pr
(x,y)∼(X′,Y ′)

[∀j ∈ {i, . . . , ibot(TX)− 1} vj(TX) favors its good son] ≥ 1− εi.

By the induction hypothesis, for any deficiency (i+1)t subsourcesX ′′ ⊂ XFI, Y
′′ ⊂ YFI,

it holds that

Pr
(x,y)∼(X′′,Y ′′)

[∀j ∈ {i+ 1, . . . , ibot(TX)− 1} vj(TX) favors its good son] ≥ 1− εi+1.

As was done in the basis of the induction, we consider two cases. If label(leftSon(vi(TX)))
= F, then by Claim 8.3

Pr
(x,y)∼(XFI,YFI)

[vi(TX) (x, y)-favors its good son] = 1.

Since X ′ ⊂ XFI and Y ′ ⊂ YFI, the same holds for (x, y) ∼ (X ′, Y ′). Thus, by the
induction hypothesis

Pr
(x,y)∼(X′,Y ′)

[∀j ∈ {i, . . . , ibot(TX)− 1} vj(TX) favors its good son] ≥ 1−εi+1 ≥ 1−εi.

Consider now the case label(leftSon(vi(TX))) 6= F. By the observation made at the
beginning of the proof, in this case the good son of vi(TX) is its left son. Thus, vi(TX)
(x, y)-favors its good son if and only if

(8.3) Response
(
xvi(TX), y,GoodSonCh

(
xleftSon(vi(TX)), y

))
= hasEntropy.

By Theorem 5.1, it is enough to show that for any deficiency t subsources X̂ ⊂ X ′,
Ŷ ⊂ Y ′, it holds that GoodSonCh(X̂leftSon(vi(TX)), Ŷ) is close to having min-entropy `.

Since X̂ is a deficiency t subsource of X ′, and since X ′ is a deficiency i·t subsource
of XFI, we have that X̂ is a deficiency (i + 1)t subsource of XFI. Similarly, Ŷ is a
deficiency (i+ 1)t subsource of YFI. Thus, by the induction hypothesis,

Pr
(x,y)∼(X̂,Ŷ)

[∀j ∈ {i+ 1, . . . , ibot(TX)− 1} vj(TX) favors its good son] ≥ 1− εi+1.

By the above equation and by the definition of GoodSonCh, except for probabil-
ity εi+1 over (x, y) ∼ (X̂, Ŷ), it holds that BExt(xvbot(TX), y) appears as a row in
GoodSonCh(xvi+1(TX), y).

Since X̂ is a deficiency O((i+1)t+` log2 n) = O(` log2 n) subsource of X and since

Xvbot(TX) is 2−Ω(k1/4)-close to an Ω(k1/8)-block-source, X̂vbot(TX) is 2−Ω(k1/8)-close to

an Ω(k1/8)-block-source. Further, since Ŷ is a deficiency O(` log2 n) subsource of Y
and since H∞(Y) ≥ k, H∞(Ŷ) = Ω(k). Theorem 4.1 and the remark following it

then imply that BExt(X̂vbot(TX), Ŷ) is 2−Ω(kγ/8)-close to a uniform string on ` bits.

Thus, GoodSonCh(X̂leftSon(vi(TX)), Ŷ) is (εi+1 +2−Ω(kγ/8))-close to having min-entropy
`. Therefore, by Theorem 5.1, equation (8.3) holds except with probability(

2−` + εi+1 + 2−Ω(kγ/8)
)
· poly(n) =

(
2−Ω(`) + εi+1

)
· poly(n) = εi.

This concludes the proof of the claim.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC16-62 GIL COHEN

8.2. Analysis of Step 2. Informally speaking, in this section we prove that
the subextractor correctly identifies vmid(TX) in some carefully chosen subsources of
XFI, YFI. More precisely, we would have wanted to prove a statement of the following
form.

A wishful claim. There exist low-deficiency subsources X ′ ⊂ XFI, Y
′ ⊂ YFI such

that with high probability over (x, y) ∼ (X ′, Y ′), vobservedmid (x, y) = vmid(TX).
Unfortunately, we will not be able to prove this statement. Nevertheless, we will

be able to prove the same statement for X ′, Y ′ that have high-deficiency in XFI, YFI.
Still, X ′, Y ′ will have enough entropy and structure to carry out the rest of the
analysis. Furthermore, the error term that we are carrying will not cause any harm
even after moving to these high-deficiency subsources.

For α ∈ supp((XFI)leftSon(vmid(TX))) and β ∈ supp((YFI)leftSon(umid(TY))), we define

Xα = XFI | ((XFI)leftSon(vmid(TX)) = α),

Yβ = YFI | ((YFI)leftSon(umid(TY)) = β).

Let B be the set of all (x, y) ∈ supp((XFI, YFI)) such that

∃i ∈ {0, . . . , ibot(TX)} vi(x, y) 6= vi(TX) ∨
∃i ∈ {0, . . . , ibot(TY)} ui(x, y) 6= ui(TY).(8.4)

By Claim 8.4,

Pr[(XFI, YFI) ∈ B] ≤ 2−Ω(`).

Thus, by averaging, there exist α, β such that

Pr[(Xα, Yβ) ∈ B] ≤ 2−Ω(`).

These are the subsources Xα ⊂ XFI, Yβ ⊂ YFI that we will work with. We think of
(x, y) ∈ B as an “error” and ignore this event for now. We later accumulate the error
coming from this event while making sure to treat the error correctly when moving
into subsources of (Xα, Yβ). More precisely, note that by moving to a deficiency
d subsource, an error of ε in the source can “grow” to at most 2d · ε restricted to
the subsource. Since the error term is 2−c`, for some constant c, and since we will
move to deficiency c′` subsources, where c′ < c is another constant, the error will
remain 2(c′−c)` = 2−Ω(`) in the subsources that we will restrict to. To summarize, we
assume that (8.4) holds. In particular, we assume that vitop(TX)(Xα, Yβ) = vtop(TX),
vimid(TX)(Xα, Yβ) = vmid(TX), etc.

Recall that vobservedmid (x, y) is defined to be the node v in pobserved(x, y), with the
largest depth, for which

(8.5) Response
(
x, y,NodePathCh

(
xv, yqobserved(x,y)

))
= hasEntropy.

If no such node v exists, v is defined to be root(TX). Thus, to show that vmid(TX) is
correctly identified on low-deficiency subsources of Xα, Yβ , we first show that there
exist low-deficiency subsources Xα,β ⊂ Xα, Yα,β ⊂ Yβ such that with high probability
over (x, y) ∼ (Xα,β , Yα,β), equation (8.5) does not hold with v = vi(x, y) for all
i > imid(TX). This is the content of the following claim. Afterward, in Claim 8.8, we
show that with high probability over (x, y) ∼ (Xα,β , Yα,β), equation (8.5) holds with
v = vimid(TX)(x, y) = vmid(TX).

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RAMSEY GRAPHS STOC16-63

Claim 8.5. There exist deficiency O(`′ log2 n) subsources Xα,β ⊂ Xα, Yα,β ⊂ Yβ
such that with probability 1− 2−Ω(`) over (x, y) ∼ (Xα,β , Yα,β), it holds that

(8.6) ∀i > imid(TX) Response
(
x, y,NodePathCh

(
xvi(x,y), yqobserved(x,y)

))
= fixed.

Toward proving Claim 8.5, we start by proving the following two claims.

Claim 8.6. There exists a deficiency log n subsource X ′α ⊂ Xα such that
qobserved(X

′
α, Yβ) is fixed to a constant.

Proof. Recall that qobserved(Xα, Yβ) is the (random) path

u0(Xα, Yβ), . . . , uibot(TY)(Xα, Yβ), uibot(TY)+1(Xα, Yβ), . . . , ulog(n)−1(Xα, Yβ).

By (8.4), for all 0 ≤ i ≤ ibot(TY) it holds that ui(Xα, Yβ) = ui(TY). In particular, for
any such i, ui(Xα, Yβ) is fixed to a constant. We now consider indices i > ibot(TY).
Consider first i = ibot(TY) + 1. In this case, ui(Xα, Yβ) is one of the two sons of
uibot(TY)(Xα, Yβ) = ubot(TY). Recall that the decision regarding which son will be on
qobserved(Xα, Yβ) is based on whether or not
(8.7)

Response
(
(Yβ)ubot(TY), Xα,GoodSonCh

(
(Yβ)leftSon(ubot(TY)), Xα

))
= hasEntropy.

Since ubot(TY) and leftSon(ubot(TY)) are descendants of leftSon(umid(TY)), as follows
by the definition of entropy-trees, and since (Yβ)leftSon(umid(TY)) is fixed to β, it holds
that (Yβ)ubot(TY) and (Yβ)leftSon(ubot(TY)) are fixed to constants. Thus, (8.7) is deter-
mined only by Xα. As (8.7) reveals one bit of information on Xα, by Fact 4.4, there
exists a deficiency 1 subsource X ′ ⊂ Xα such that ui(X

′, Yβ) is fixed to a constant.
We now repeat this argument for i = ibot(TY) + 2, . . . , log(n)− 1. Each time we

make sure that the next descendant of ubot(TY) is fixed to a constant on a low-
deficiency subsource of Xα with Yβ . Since we repeat this process at most log n
times, we will eventually obtain a deficiency log n subsource X ′α ⊂ Xα such that
qobserved(X

′
α, Yβ) is fixed to a constant, as desired. Accounting for the error, note that

since ` = ω(log n), it holds that

(8.8) Pr [(X ′α, Yβ) ∈ B] ≤ 2−Ω(`).

Claim 8.7. For any i > imid(TX),

NodePathCh
(
(X ′α)vi(X′α,Yβ), (Yβ)qobserved(X′α,Yβ)

)
is a deterministic function of Yβ.

Proof. By Claim 8.6, we have that qobserved(X
′
α, Yβ) is fixed to a constant. Thus,

it suffices to show that (X ′α)vi(X′α,Yβ) is a deterministic function of Yβ . We start by
considering i = imid(TX) + 1. In this case, vi(X

′
α, Yβ) is fixed to a constant. Indeed,

since imid(TX)+1 ≤ ibot(TX), it holds by (8.4) that vi(Xα, Yβ) = vi(TX) and so, since
X ′α is a subsource of Xα, vi(X

′
α, Yβ) = vi(TX).

The case i > imid(TX) + 1 follows by a different logic, similar to that used
in the proof of Claim 8.6. Let us first consider i = imid(TX) + 2. Recall that
(Xα)leftSon(vmid(TX)) is fixed to α. Thus, also (X ′α)leftSon(vmid(TX)) is fixed to α. Now,
vi(X

′
α, Yβ) is defined to be one of the two sons of leftSon(vmid(TX)) according to the

Boolean value of the expression

Response
(
(X ′α)leftSon(vmid(TX)), Yβ ,GoodSonCh

(
(X ′α)leftSon(leftSon(vmid(TX))), Yβ

))
= hasEntropy.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC16-64 GIL COHEN

Since (X ′α)leftSon(vmid(TX)) is fixed to a constant, the above equation is determined
only by Yβ . This shows that vi(X

′
α, Yβ) is a deterministic function of Yβ for i =

imid(TX) + 2. One can now use a similar argument to show that the same holds for
any i > imid(TX) + 1.

To conclude the proof of the claim, we need to show that (X ′α)vi(X′α,Yβ) is a
deterministic function of Yβ for i > imid(TX). By the above, for any such i, vi(X

′
α, Yβ)

is a descendant of leftSon(vmid(TX)) determined only by Yβ . The claim then follows
as (X ′α)leftSon(vmid(TX)) is fixed to a constant.

We are now ready to prove Claim 8.5.

Proof of Claim 8.5. By Claim 8.7,

NodePathCh
(
(X ′α)vi(X′α,Yβ), (Yβ)qobserved(X′α,Yβ)

)
is a deterministic function of Yβ for all i > imid(TX). Thus, there exists a deficiency
`′ log2 n subsource Y ′β ⊂ Yβ such that for all i > imid(TX),

NodePathCh
(

(X ′α)vi(X′α,Y ′β), (Y
′
β)qobserved(X′α,Y ′β)

)
is fixed to a constant. Recall that `′ log2 n = `/c2. We set the constant c2 to be
smaller than the constant hidden in the Ω-notation in the error term of (8.8) so
that Pr[(X ′α, Y

′
β) ∈ B] ≤ 2−Ω(`). By Theorem 5.1, there exist deficiency 2`′ log2 n+ 2

subsources Xα,β ⊂ X ′α, Yα,β ⊂ Y ′β , such that with probability 1−2−Ω(`) ·24`′ log2 n+4 =

1−2Ω(`) over (x, y) ∼ (Xα,β , Yα,β) equation (8.6) holds, where the last equation holds
for an appropriate choice of the constant c2.

We note that this application of Theorem 5.1 is valid as both Xα,β , Yα,β are 1/4-
close to having min-entropy Ω(log10 n). Indeed, Xα,β is a deficiency O(`′ log2 n) sub-
source of Xα = XFI | ((XFI)leftSon(vmid(TX)) = α). Since XFI is a deficiency O(` log2 n)

subsource of X and since Xvmid(TX) is 2−Ω(k1/4)-close to an Ω(k1/4)-block-source,

our choice of k implies that (XFI)vmid(TX) is also Ω(k1/4)-close to an Ω(k1/4)-block-

source. Thus, Xα is 2−Ω(k1/4)-close to having min-entropy Ω(k1/4). Therefore, Xα,β

is 2−Ω(k1/4)-close to having min-entropy Ω(log10 n). A similar argument can be used
to show that Yα,β is 1/4-close to having min-entropy Ω(log10 n), as required by The-
orem 5.1.

Claim 8.8. With probability 1−O(ε) over (x, y) ∼ (Xα,β , Yα,β) it holds that

(8.9) Response
(
x, y,NodePathCh

(
xvimid(TX)(x,y), yqobserved(x,y)

))
= hasEntropy.

Proof. Let B be the event defined in (8.4). As usual, we consider (x, y) ∈ B an
“error” and ignore it for now. In particular, vimid(TX)(x, y) = vmid(TX) and the path
qobserved(x, y) is assumed to contain utop(TY). Thus, NodePathCh(xvimid(TX)(x,y), yqobserved(x,y))

contains BExt
(
yutop(TY), xvmid(TX)

)
as a row.

Recall that (Y)utop(TY) is 2−Ω(k1/4)-close to an Ω(
√
k)-block-source. As YFI is a

deficiency O(` log2 n) subsource of Y , our assumption on k implies that (YFI)utop(TY)

is also 2−Ω(k1/4)-close to an Ω(
√
k)-block-source. By a similar argument, (YFI)umid(TY)

is 2−Ω(k1/4)-close to an Ω(k1/4)-block-source. Thus, (Yβ)umid(TY) is 2−Ω(k1/4)-close to

having min-entropy Ω(k1/4), and so (Yβ)utop(TY) is 2−Ω(k1/4)-close to an Ω(k1/4)-block-

source. As Yα,β is a deficiency O(`′ log2 n) subsource of Yβ , our choice of `′ implies

that (Yα,β)utop(TY) is 2−Ω(k1/4)-close to an Ω(k1/4)-block-source.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RAMSEY GRAPHS STOC16-65

Recall that Xvmid(TX) is 2−Ω(k1/4)-close to an Ω(k1/4)-block-source. Since XFI

is a deficiency O(` log2 n) subsource of X, (XFI)vmid(TX) is also 2−Ω(k1/4)-close to an

Ω(k1/4)-block-source. Thus, (Xα)vmid(TX) is 2−Ω(k1/4)-close to having min-entropy

Ω(k1/4). Our choice of `′ then implies that (Xα,β)vmid(TX) is 2−Ω(k1/4)-close to having

min-entropy Ω(k1/4).
Let X̂ ⊂ Xα,β , Ŷ ⊂ Yα,β be any deficiency 20`′ log n subsources. By our assump-

tion on k, we have that Ŷutop(TY) is 2−Ω(k1/4)-close to an Ω(k1/4)-block-source and that

X̂vmid(TX) is 2−Ω(k1/4)-close to having min-entropy Ω(k1/4). Thus, BExt(Ŷutop(TY), X̂vmid(TX))

is 2−(kγ/4)-close to a uniform string on `′ bits. Thus, continuing to ignore the error set

B, NodePathCh(X̂vimid(TX)(X̂,Ŷ), Ŷqobserved(X̂,Ŷ)) is 2−(kγ/4)-close to having min-entropy

`′. Theorem 5.1 then implies that (8.9) holds except with probability(
2−`

′
+ 2−Ω(kγ/4)

)
· poly(n) = O(ε).

The error term coming from the set B contributes additional O(ε) to the total error.
This concludes the proof of the claim.

8.3. Analysis of Step 3. Recall that the output of the subextractor is defined
as

SubExt(x, y) = BExt
(
xvobservedmid (x,y) ◦ x, y

)
.

By Claims 8.5 and 8.8, we have that except with probability O(ε) over (x, y) ∼
(Xα,β , Yα,β) it holds that vobservedmid (x, y) = vmid(TX). Recall that vmid(TX) is a de-

scendant of leftSon(vtop(TX)). Further, recall that (Xα,β)vmid(TX) is 2−Ω(k1/4)-close to

having min-entropy Ω(k1/4). As Xvtop(TX) is 2−Ω(k1/4)-close to an Ω(
√
k)-block-source,

we have that (Xα,β)vtop(TX) is 2−Ω(k1/4)-close to an Ω(k1/4)-block-source. In particular,

this implies that (Xα,β)vmid(TX) ◦Xα,β is 2−Ω(k1/4)-close to an Ω(k1/4)-block-source.

As Yα,β is 2−Ω(k1/4)-close to having min-entropy Ω(
√
k), Theorem 4.1 implies that

SubExt(Xα,β , Yα,β) = BExt
(

(Xα,β)vobservedmid (Xα,β ,Yα,β) ◦Xα,β , Yα,β

)
is (2−Ω(kγ/4)+O(ε))-close to uniform. The proof of the claim then follows as 2−Ω(kγ/4) =
O(ε). Note further that by Theorem 4.1, the output length of SubExt is Ω(k1/4). This
proves Theorem 8.1.

Acknowledgments. I wish to thank Ran Raz and Avi Wigderson for their warm
encouragement. On a personal note, it is uncustomary to acknowledge one’s partner
in life in mathematical papers. However, given that this paper was intensively written
in the last month of my wife’s pregnancy and in the first month of parenthood to the
newborn baby girl Meshi and to our sweet Yahli, I will allow myself to make an
exception—thank you, Orit! Your support and belief in my abilities are uncanny.

REFERENCES

[1] H. L. Abbott, Lower bounds for some Ramsey numbers, Discrete Math., 2 (1972), pp. 289–293.
[2] N. Alon, The Shannon capacity of a union, Combinatorica, 18 (1998), pp. 301–310.

[3] B. Barak, A Simple Explicit Construction of an nÕ(logn)-Ramsey Graph, preprint, https:
//arxiv.org/abs/math/0601651, 2006.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://arxiv.org/abs/math/0601651
https://arxiv.org/abs/math/0601651

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC16-66 GIL COHEN

[4] B. Barak, R. Impagliazzo, and A. Wigderson, Extracting randomness using few inde-
pendent sources, SIAM J. Comput., 36 (2006), pp. 1095–1118, https://doi.org/10.1137/
S0097539705447141.

[5] B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, and A. Wigderson, Simulating indepen-
dence: New constructions of condensers, Ramsey graphs, dispersers, and extractors, J.
ACM, 57 (2010), 20.

[6] B. Barak, A. Rao, R. Shaltiel, and A. Wigderson, 2-source dispersers for no(1) entropy,
and Ramsey graphs beating the Frankl-Wilson construction, Ann. of Math. (2), 176 (2012),
pp. 1483–1543.

[7] A. Ben-Aroya, D. Doron, and A. Ta-Shma, Explicit two-source extractors for near-
logarithmic min-entropy, in Electronic Colloquium on Computational Complexity (ECCC),
Weizmann Institute of Science, Rehovot, Israel, 2016, 088.

[8] E. Ben-Sasson and N. Zewi, From affine to two-source extractors via approximate duality, in
Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, ACM, New
York, 2011, pp. 177–186.

[9] J. Bourgain, More on the sum-product phenomenon in prime fields and its applications, Int.
J. Number Theory, 1 (2005), pp. 1–32.

[10] E. Chattopadhyay and X. Li, Explicit non-malleable extractors, multi-source extractors, and
almost optimal privacy amplification protocols, in Proceedings of the 54th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), IEEE, Washington, DC, 2016,
pp. 158–167.

[11] E. Chattopadhyay and D. Zuckerman, Explicit two-source extractors and resilient functions,
in Electronic Colloquium on Computational Complexity (ECCC), Weizmann Institute of
Science, Rehovot, Israel, 2015, p. 119.

[12] B. Chor and O. Goldreich, Unbiased bits from sources of weak randomness and probabilistic
communication complexity, SIAM J. Comput., 17 (1988), pp. 230–261, https://doi.org/10.
1137/0217015.

[13] F. Chung, A note on constructive methods for Ramsey numbers, J. Graph Theory, 5 (1981),
pp. 109–113.

[14] G. Cohen, Local correlation breakers and applications to three-source extractors and mergers,
in Electronic Colloquium on Computational Complexity (ECCC), Weizmann Institute of
Science, Rehovot, Israel, 2015, 038.

[15] G. Cohen, Making the most of advice: New correlation breakers and their applications, in
Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), IEEE, Washington, DC, 2016, pp. 188–196.

[16] G. Cohen, Two-source extractors for quasi-logarithmic min-entropy and improved privacy
amplification protocols, in Electronic Colloquium on Computational Complexity (ECCC),
Weizmann Institute of Science, Rehovot, Israel, 2016, 114.

[17] G. Cohen and L. Schulman, Extractors for near logarithmic min-entropy, in Proceedings of
the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS), IEEE,
Washington, DC, 2016, pp. 178–187.

[18] P. Erdős, Some remarks on the theory of graphs, Bull. Amer. Math. Soc., 53 (1947), pp. 292–
294.

[19] A. Fiat and M. Naor, Implicit O(1) probe search, SIAM J. Comput., 22 (1993), pp. 1–10,
https://doi.org/10.1137/0222001.

[20] P. Frankl, A constructive lower bound for some Ramsey numbers, Ars Combin., 3 (1977),
pp. 297–302.

[21] P. Frankl and R. M. Wilson, Intersection theorems with geometric consequences, Combina-
torica, 1 (1981), pp. 357–368.

[22] A. Gabizon and R. Shaltiel, Increasing the output length of zero-error dispersers, in Ap-
proximation, Randomization and Combinatorial Optimization. Algorithms and Techniques,
Springer, New York, 2008, pp. 430–443.

[23] P. Gopalan, Constructing Ramsey graphs from Boolean function representations, Combina-
torica, 34 (2014), pp. 173–206.

[24] R. Gradwohl, G. Kindler, O. Reingold, and A. Ta-Shma, On the error parameter of dis-
persers, in Approximation, Randomization and Combinatorial Optimization. Algorithms
and Techniques, Springer, New York, 2005, pp. 294–305.

[25] V. Grolmusz, Low rank co-diagonal matrices and Ramsey graphs, J. Combin., 7 (2001),
pp. R15–R15.

[26] Y. Kalai, X. Li, A. Rao, and D. Zuckerman, Network extractor protocols, in Proceedings of
the 49th Annual IEEE Symposium on Foundations of Computer Science, IEEE, Washing-
ton, DC, 2008, pp. 654–663.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/S0097539705447141
https://doi.org/10.1137/S0097539705447141
https://doi.org/10.1137/0217015
https://doi.org/10.1137/0217015
https://doi.org/10.1137/0222001

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RAMSEY GRAPHS STOC16-67

[27] X. Li, Improved constructions of three source extractors, in Proceedings of the 26th IEEE
Annual Conference on Computational Complexity, IEEE, Washington, DC, 2011, pp. 126–
136.

[28] X. Li, Extractors for a constant number of independent sources with polylogarithmic min-
entropy, in Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer
Science, IEEE, Washington, DC, 2013, pp. 100–109.

[29] X. Li, Improved constructions of two-source extractors, in Electronic Colloquium on Computa-
tional Complexity (ECCC), Weizmann Institute of Science, Rehovot, Israel, 2015, p. 125.

[30] X. Li, Three-source extractors for polylogarithmic min-entropy, in Electronic Colloquium on
Computational Complexity (ECCC), Weizmann Institute of Science, Rehovot, Israel, 2015,
p. 190.

[31] X. Li, Improved non-malleable extractors, non-malleable codes and independent source extrac-
tors, in Electronic Colloquium on Computational Complexity (ECCC), Weizmann Institute
of Science, Rehovot, Israel, 2016, 115.

[32] Z. Nagy, A constructive estimation of the Ramsey numbers, Mat. Lapok, 23 (1975), pp. 301–
302.

[33] M. Naor, Constructing Ramsey Graphs from Small Probability Spaces, IBM Research Report
RJ 8810, IBM Thomas J. Watson Research Division, 1992.

[34] P. Pudlák and V. Rödl, Pseudorandom sets and explicit constructions of Ramsey graphs,
Quad. Mat, 13 (2004), pp. 327–346.

[35] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. (2), 30 (1929), pp. 264–
286.

[36] A. Rao, A 2-source almost-extractor for linear entropy, in Approximation, Randomization
and Combinatorial Optimization. Algorithms and Techniques, Springer, New York, 2008,
pp. 549–556.

[37] A. Rao, Extractors for a constant number of polynomially small min-entropy independent
sources, SIAM J. Comput., 39 (2009), pp. 168–194, https://doi.org/10.1137/060671218.

[38] R. Raz, Extractors with weak random seeds, in Proceedings of the 37th Annual ACM Sympo-
sium on Theory of Computing, ACM, New York, 2005, pp. 11–20.

[39] A. Vitanov, F. Dupuis, M. Tomamichel, and R. Renner, Chain rules for smooth min-and
max-entropies, IEEE Trans. Inform. Theory, 59 (2013), pp. 2603–2612.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

28
.8

.1
27

.1
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/060671218

	Introduction
	Two-source zero-error dispersers, extractors, and subextractors
	Subsequent work
	Organization of this paper

	Overview of the challenge-response mechanism
	Motivating the challenge-response mechanism
	The challenge-response mechanism
	The three-types lemma
	Playing with the challenge-response mechanism

	Overview of the construction and analysis
	Entropy-trees and tree-structured sources
	Identifying the entropy-path
	The strategy for the rest of our construction
	Finding vmid (TX)
	Determining the output

	Preliminaries
	Standard (and less standard) notations and definitions
	Li's block-source–weak-source extractor
	Subsources

	The challenge-response mechanism
	Entropy-trees and tree-structured sources
	The two-source subextractor
	Analysis of the construction
	Analysis of Step 1
	Analysis of Step 2
	Analysis of Step 3

	References

