Regular Graph Properties

by
John Brownfield
William Gasarch

1 Introduction

Consider the following question:
Is the set of Hamiltonian graphs regular?
To pose this question properly we need to specify (a) which strings represent graphs, (b) what do to if a string that does not represent a graph is input.

Def 1.1 All strings are over the alphabet $\{0,1, \$\}$. Let x be a string of the form $\$ x_{1} \$ x_{2} \$ \cdots \$ x_{n} \$$ where the following happen:

1. $(\forall i)\left[x_{i} \in\{0,1\}^{n}\right]$. We will let

$$
x_{i}=x_{i 1} \cdots x_{i n}
$$

2. View the string as the following matrix:

$$
\left(\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 n} \\
\vdots & \vdots & \vdots & \vdots \\
x_{n 1} & x_{n 2} & \cdots & x_{n n}
\end{array}\right)
$$

3. For all $1 \leq i<j \leq n, x_{i j}=x_{j i}$.
4. For all $1 \leq i \leq n, x_{i i}=0$.

Any string of the form above is interpreted as the adjacency matrix of a graph.

We identify a graph G with the string that is its adjacency matrix, as above. Hence we will say things like Run DFA M on G.

Example 1.2 The graph K_{4} is the string
\$0111\$1011\$1101\$110\$

Def 1.3 Let \mathcal{G} be a set of graphs.

1. Let \mathcal{G} is a graph property if \mathcal{G} satisfies the following property: for all pairs of graphs, $\left(G_{1}, G_{2}\right)$, if G_{1} and G_{2} are isomorphic then either $G_{1}, G_{2} \in \mathcal{G}$ or $G_{1}, G_{2} \notin \mathcal{G}$.
2. A graph property \mathcal{G} is regular if there exists a DFA M such that the following hold:
(a) If $G \in \mathcal{G}$ then $M(G)$ accepts.
(b) If $G \notin \mathcal{G}$ then $M(G)$ rejects.
3. If w is a string that does not represent an adjacency matrix then we have no condition on what $M(w)$ is.

2 Graph Properties that are Regular

Def 2.1

1. If $w \in\{0,1\}^{*}$ then $\#_{1}(w)$ is the number of 1 's in w.
2. Let $A \subseteq \mathrm{~N} . A$ is regular if the following set is regular:

$$
\left\{w \in\{0,1\}^{*}: \#_{1}(w) \in A\right\}
$$

is regular.

Theorem 2.2 Let $A \subseteq \mathrm{~N}$ be regular.

1. The following graph property is regular:

$$
\mathcal{G}=\{G=(V, E):(\forall v \in V)[|\operatorname{deg}(v)| \in A]\} .
$$

2. The following graph property is regular:

$$
\mathcal{G}=\{G=(V, E):|E| \in A\} .
$$

Proof:

1) Let $W=\left\{w \in\{0,1\}^{*}: \#_{1}(w) \in A\right\}$. W is regular by the definition of $A \subseteq \mathrm{~N}$ being regular. Let α be the regular expression such that $L(W)=\alpha$.

A graph G is in \mathcal{G} iff every row of its adjacency matrix is in L. Consider the regular expression

$$
\beta=\$(\alpha \$)^{*}
$$

It is easy to see that
$G \in \mathcal{G}$ implies $G \in L(\beta)$.
$G \notin \mathcal{G}$ implies $G \notin L(\beta)$.
2) We leave this to the reader.

Corollary 2.3 Let $d, m \in 2$. The following graph properties are regular.

1. The set of graphs where $(\forall v)[\operatorname{deg}(v) \geq d]$.
2. The set of graphs where $(\forall v)[\operatorname{deg}(v)=d]$.
3. The set of graphs where $(\forall v)[\operatorname{deg}(v) \leq d]$.
4. Let $A \subseteq\{0,1, \ldots, d-1\}$. The set of graphs where

$$
\{\operatorname{deg}(v) \quad(\bmod m): v \in V\} \subseteq A\} .
$$

5. The set of Eulerian graphs. (This is the $m=2, A=\{0\}$ case.)
6. The set of graphs $G=(V, E)$ such that $|E| \equiv d(\bmod m)$.

Open Problem 2.4 Aside from Eulerian graphs and (arguably) the set of graphs of constant degree, are there any other interesting graph properties that are regular.

3 Graph Properties that are not Regular

Theorem 3.1 Let \mathcal{G} be a graph property. Assume there exists $n, d \in \mathrm{~N}$ and graphs G_{1}, G_{2} such that the following hold:

1. G_{1} and G_{2} have n vertices $\{1, \ldots, n\}$.
2. $\operatorname{deg}_{G_{2}}(1)-\operatorname{deg}_{G_{1}}(1) \geq d$.
3. $G_{1}-\{1\} \equiv G_{2}-\{1\}$.
4. $G_{1} \in \mathcal{G}$ and $\mathcal{G}_{2} \notin \mathcal{G}$

Then \mathcal{G} is not regular.

Proof:

Assume \mathcal{G} is regular via DFA M. Assume that M has n states. Let m be a number to be picked later; however, it is large. Run M on the strings
$\$ 0^{m} 1^{0} \$$
$\$ 1^{1} 0^{m-1} \$$
$\$ 1^{2} 0^{m-2} \$$
!
$\$ 1^{m} 0^{0} \$$
Let m be so large that there exists $0 \leq m_{1}<m_{2} \leq m$ such that

1. $M\left(1^{m_{1}} 0^{m-m_{1}}\right)=M\left(1^{m_{2}} 0^{m-m_{2}}\right)=p(p$ is a state in $M)$.
2. $m_{2}-m_{1} \geq d$
