Regular Graph Properties by John Brownfield William Gasarch

1 Introduction

Consider the following question:

Is the set of Hamiltonian graphs regular?

To pose this question properly we need to specify (a) which strings represent graphs, (b) what do to if a string that does not represent a graph is input.

Def 1.1 All strings are over the alphabet $\{0, 1, \$\}$. Let x be a string of the form $x_1 x_2 \cdots x_n$ where the following happen:

1. $(\forall i) [x_i \in \{0, 1\}^n]$. We will let

$$x_i = x_{i1} \cdots x_{in}$$
.

2. View the string as the following matrix:

$$\begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{pmatrix}$$

- 3. For all $1 \le i < j \le n$, $x_{ij} = x_{ji}$.
- 4. For all $1 \leq i \leq n$, $x_{ii} = 0$.

Any string of the form above is interpreted as the adjacency matrix of a graph.

We identify a graph G with the string that is its adjacency matrix, as above. Hence we will say things like Run DFA M on G.

Example 1.2 The graph K_4 is the string

\$0111\$1011\$1101\$1110\$

Def 1.3 Let \mathcal{G} be a set of graphs.

- 1. Let \mathcal{G} is a graph property if \mathcal{G} satisfies the following property: for all pairs of graphs, (G_1, G_2) , if G_1 and G_2 are isomorphic then either $G_1, G_2 \in \mathcal{G}$ or $G_1, G_2 \notin \mathcal{G}$.
- 2. A graph property \mathcal{G} is *regular* if there exists a DFA M such that the following hold:
 - (a) If $G \in \mathcal{G}$ then M(G) accepts.
 - (b) If $G \notin \mathcal{G}$ then M(G) rejects.
- 3. If w is a string that does not represent an adjacency matrix then we have no condition on what M(w) is.

2 Graph Properties that are Regular

Def 2.1

- 1. If $w \in \{0,1\}^*$ then $\#_1(w)$ is the number of 1's in w.
- 2. Let $A \subseteq \mathsf{N}$. A is regular if the following set is regular:

$$\{w \in \{0,1\}^* : \#_1(w) \in A\}$$

is regular.

Theorem 2.2 Let $A \subseteq \mathsf{N}$ be regular.

1. The following graph property is regular:

$$\mathcal{G} = \{G = (V, E) : (\forall v \in V) [|\deg(v)| \in A]\}.$$

2. The following graph property is regular:

$$\mathcal{G} = \{ G = (V, E) : |E| \in A \}.$$

Proof:

1) Let $W = \{w \in \{0,1\}^* : \#_1(w) \in A\}$. W is regular by the definition of $A \subseteq \mathbb{N}$ being regular. Let α be the regular expression such that $L(W) = \alpha$.

A graph G is in \mathcal{G} iff every row of its adjacency matrix is in L. Consider the regular expression

$$\beta = \$(\alpha\$)^*$$

It is easy to see that $G \in \mathcal{G}$ implies $G \in L(\beta)$. $G \notin \mathcal{G}$ implies $G \notin L(\beta)$.

2) We leave this to the reader.

Corollary 2.3 Let $d, m \in 2$. The following graph properties are regular.

- 1. The set of graphs where $(\forall v)[\deg(v) \ge d]$.
- 2. The set of graphs where $(\forall v)[\deg(v) = d]$.
- 3. The set of graphs where $(\forall v)[\deg(v) \leq d]$.
- 4. Let $A \subseteq \{0, 1, \dots, d-1\}$. The set of graphs where

 $\{\deg(v) \pmod{m} : v \in V\} \subseteq A\}.$

- 5. The set of Eulerian graphs. (This is the m = 2, $A = \{0\}$ case.)
- 6. The set of graphs G = (V, E) such that $|E| \equiv d \pmod{m}$.

Open Problem 2.4 Aside from Eulerian graphs and (arguably) the set of graphs of constant degree, are there any other *interesting* graph properties that are regular.

3 Graph Properties that are not Regular

Theorem 3.1 Let \mathcal{G} be a graph property. Assume there exists $n, d \in \mathbb{N}$ and graphs G_1, G_2 such that the following hold:

- 1. G_1 and G_2 have n vertices $\{1, \ldots, n\}$.
- 2. $\deg_{G_2}(1) \deg_{G_1}(1) \ge d$.
- 3. $G_1 \{1\} \equiv G_2 \{1\}.$
- 4. $G_1 \in \mathcal{G} \text{ and } \mathcal{G}_2 \notin \mathcal{G}$

Then \mathcal{G} is not regular.

Proof:

Assume \mathcal{G} is regular via DFA M. Assume that M has n states. Let m be a number to be picked later; however, it is large. Run M on the strings

 $0^m 1^0$ $1^0 m^{-1}$ $1^0 m^{-1}$ $1^2 0^{m-2}$ $1^m 0^0$ Let m be so large that there exists $0 \le m_1 < m_2 \le m$ such that

1. $M(1^{m_1}0^{m-m_1}) = M(1^{m_2}0^{m-m_2}) = p$ (p is a state in M).

2. $m_2 - m_1 \ge d$

