1 Limits On How Well We Can Approximate $a+\sqrt{b}$ With Rationals

We want to find see how well we can approximation $a+\sqrt{b}$ where $a, b \in \mathbf{Q}-\mathbf{Z}$. We will determine a, b, Δ to satisfy the following:

$$
\left(\exists^{\infty} q \in \mathrm{~N}\right)(\exists p \in \mathrm{~N})\left[\left|\frac{p}{q}-(a+\sqrt{b})\right|<\frac{\Delta}{q^{2}}\right] \Longrightarrow \text { A CONTRADICTION. }
$$

If b is NOT squarefree then we would just factor out the squares. So we will also want b is square free.

Assume p, q, Δ are such that $0<\frac{p}{q}-(a+\sqrt{b})<\frac{\Delta}{q^{2}}$. (The case where the diff is negative is similar.)

We will find (a, b, Δ) such that if q is large we get a contradiction.
There exists $\delta<\Delta$ such that

$$
\begin{gathered}
\frac{p}{q}-(a+\sqrt{b})=\frac{\delta}{q^{2}} . \\
p-q(a+\sqrt{b})=\frac{\delta}{q} \\
\frac{\delta}{q}=p-a q-\sqrt{b} q \\
\frac{\delta}{q}+\sqrt{b} q=p-a q \\
\left(\frac{\delta}{q}+\sqrt{b} q\right)^{2}=(p-a q)^{2} \\
\frac{\delta^{2}}{q^{2}}+2 \frac{\delta}{q} \sqrt{b} q+q^{2} b=p^{2}-2 a p q+q^{2} a^{2} \\
\frac{\delta^{2}}{q^{2}}+2 \delta \sqrt{b}=p^{2}-2 a p q+q^{2} a^{2}-q^{2} b=p^{2}-2 a p q+q^{2}\left(a^{2}-b\right)
\end{gathered}
$$

Want that as $q \rightarrow \infty$ LHS $\notin \mathrm{Z}$ and RHS $\in \mathrm{Z}$.

1.1 Making LHS $\notin \mathrm{Z}$

The LHS is

$$
\frac{\delta^{2}}{q^{2}}+2 \delta \sqrt{b}=p^{2}-2 a p q
$$

If q is large then $\frac{\delta^{2}}{q^{2}}$ is very small. We will also make $2 \delta \sqrt{b}$ small so that the sum is <1.

We first see how big q has to be and then how to set Δ which bounds δ.
Need

$$
\begin{gathered}
\frac{\delta^{2}}{q^{2}}+2 \delta \sqrt{b}<1 \\
\delta^{2}+2 \delta \sqrt{b} q^{2}<q^{2} \\
\delta^{2}+2 \delta \sqrt{b} q^{2}<q^{2} \\
\delta^{2}<q^{2}(1-2 \delta \sqrt{b}) \\
q^{2}>\frac{\delta^{2}}{1-2 \delta \sqrt{b}} \\
q>\sqrt{\frac{\delta^{2}}{1-2 \delta \sqrt{b}}}
\end{gathered}
$$

We need to pick δ so that
$1-2 \delta \sqrt{b}>0$.
$1>2 \delta \sqrt{b}$
$\delta<\frac{1}{\sqrt{b}}$.
Since $\delta<\Delta$ we can take $\Delta=\frac{1}{\sqrt{b}}$.
Upshot To get LHS $\notin \mathrm{Z}$

1. $q>\sqrt{\frac{\delta^{2}}{1-2 \delta \sqrt{b}}}$
2. $\Delta=\frac{1}{\sqrt{b}}$.

1.2 Making RHS $\in Z$

The RHS is

$$
p^{2}-2 a p q+q^{2}\left(a^{2}-b\right)
$$

Note that $p, q \in \mathbf{N}$. Hence we need to make have $2 a p q \in \mathbf{N}$ and $a^{2}-b \in \mathbf{Z}$. Recall that $a, b \in \mathrm{Q}-\mathrm{N}$.

To make $2 a p q \in \mathrm{Z}$ we take $a \in\left\{-\frac{1}{2}, \frac{1}{2}\right\}$.

1. $a=\frac{1}{2}$: To make $q^{2}\left(a^{2}-b\right) \in \mathrm{Z}$ we need $q^{2}\left(\frac{1}{4}-b\right) \in Z$. Hence

$$
b \in X=\left\{\frac{4 c+1}{4}: c \in \mathrm{~N}\right\} .
$$

2. $a=-\frac{1}{2}$: To make $q^{2}\left(a^{2}-b\right) \in \mathbf{Z}$ we need $q^{2}\left(\frac{1}{4}-b\right) \in \mathbf{Z}$. Hence

$$
b \in Y=\left\{\frac{4 c+1}{4}: c \in \mathrm{~N}\right\} .
$$

Upshot To get RHS $\in Z$ we do one of the following:

1. $a=\frac{1}{2}, b=\frac{4 c+1}{4}, 4 c+1$ NOT a square.
2. $a=-\frac{1}{2}, b=\frac{4 c+1}{4}, 4 c+1$ NOT a square.

1.3 Actual Numbers

Since Δ only depends on b we will take $a=\frac{1}{2}$ and not consider the $a=-\frac{1}{2}$ case.

a	b	$\Delta=\frac{1}{2 \sqrt{b}}$
$\frac{1}{2}$	$\frac{5}{4}$	$\frac{1}{\sqrt{5}}$
$\frac{1}{2}$	$\frac{9}{4}$	NO GOOD
$\frac{1}{2}$	$\frac{13}{4}$	$\frac{1}{\sqrt{13}}$
$\frac{1}{2}$	$\frac{17}{4}$	$\frac{1}{\sqrt{17}}$

Clearly the winner is $\frac{1}{2}+\frac{\sqrt{5}}{2}=\frac{1+\sqrt{5}}{2}$.

