1 Limits On How Well We Can Approximate $a + \sqrt{b}$ With Rationals

We want to find see how well we can approximation $a + \sqrt{b}$ where $a, b \in Q-Z$. We will determine a, b, Δ to satisfy the following:

$$(\exists^{\infty}q \in \mathsf{N})(\exists p \in \mathsf{N})\left[\left|\frac{p}{q} - (a + \sqrt{b})\right| < \frac{\Delta}{q^2}\right] \implies A \text{ CONTRADICTION}.$$

If b is NOT squarefree then we would just factor out the squares. So we will also want b is square free.

Assume p, q, Δ are such that $0 < \frac{p}{q} - (a + \sqrt{b}) < \frac{\Delta}{q^2}$. (The case where the diff is negative is similar.)

We will find (a, b, Δ) such that if q is large we get a contradiction. There exists $\delta < \Delta$ such that

$$\frac{p}{q} - (a + \sqrt{b}) = \frac{\delta}{q^2}.$$

$$p - q(a + \sqrt{b}) = \frac{\delta}{q}$$

$$\frac{\delta}{q} = p - aq - \sqrt{b}q$$

$$\frac{\delta}{q} + \sqrt{b}q = p - aq$$

$$\left(\frac{\delta}{q} + \sqrt{b}q\right)^2 = (p - aq)^2$$

$$\frac{\delta^2}{q^2} + 2\frac{\delta}{q}\sqrt{b}q + q^2b = p^2 - 2apq + q^2a^2$$

$$\frac{\delta^2}{q^2} + 2\delta\sqrt{b} = p^2 - 2apq + q^2a^2 - q^2b = p^2 - 2apq + q^2(a^2 - b)$$

Want that as $q \to \infty$ LHS $\notin \mathsf{Z}$ and RHS $\in \mathsf{Z}$.

1.1 Making LHS $\notin Z$

The LHS is

$$\frac{\delta^2}{q^2} + 2\delta\sqrt{b} = p^2 - 2apq$$

If q is large then $\frac{\delta^2}{q^2}$ is very small. We will also make $2\delta\sqrt{b}$ small so that the sum is < 1.

We first see how big q has to be and then how to set Δ which bounds δ . Need

$$\frac{\delta^2}{q^2} + 2\delta\sqrt{b} < 1$$
$$\delta^2 + 2\delta\sqrt{b}q^2 < q^2$$
$$\delta^2 + 2\delta\sqrt{b}q^2 < q^2$$
$$\delta^2 < q^2(1 - 2\delta\sqrt{b})$$
$$q^2 > \frac{\delta^2}{1 - 2\delta\sqrt{b}}$$
$$q > \sqrt{\frac{\delta^2}{1 - 2\delta\sqrt{b}}}$$

We need to pick δ so that $1 - 2\delta \sqrt{h} > 0$

$$1 - 2\delta\sqrt{b} > 0.$$

$$1 > 2\delta\sqrt{b}$$

$$\delta < \frac{1}{\sqrt{b}}.$$

Since $\delta < \Delta$ we c

Since $\delta < \Delta$ we can take $\Delta = \frac{1}{\sqrt{b}}$. Upshot To get LHS $\notin Z$

1.
$$q > \sqrt{\frac{\delta^2}{1-2\delta\sqrt{b}}}$$

2. $\Delta = \frac{1}{\sqrt{b}}$.

1.2 Making $RHS \in Z$

The RHS is

$$p^2 - 2apq + q^2(a^2 - b)$$

Note that $p, q \in \mathbb{N}$. Hence we need to make have $2apq \in \mathbb{N}$ and $a^2 - b \in \mathbb{Z}$. Recall that $a, b \in \mathbb{Q} - \mathbb{N}$.

To make $2apq \in \mathsf{Z}$ we take $a \in \{-\frac{1}{2}, \frac{1}{2}\}$.

1. $a = \frac{1}{2}$: To make $q^2(a^2 - b) \in \mathsf{Z}$ we need $q^2(\frac{1}{4} - b) \in \mathsf{Z}$. Hence

$$b \in X = \left\{ \frac{4c+1}{4} : c \in \mathsf{N} \right\}.$$

2.
$$a = -\frac{1}{2}$$
: To make $q^2(a^2 - b) \in \mathsf{Z}$ we need $q^2(\frac{1}{4} - b) \in \mathsf{Z}$. Hence

$$b \in Y = \left\{\frac{4c+1}{4} : c \in \mathsf{N}\right\}.$$

Upshot To get $RHS \in Z$ we do one of the following:

1. $a = \frac{1}{2}, b = \frac{4c+1}{4}, 4c+1$ NOT a square. 2. $a = -\frac{1}{2}, b = \frac{4c+1}{4}, 4c+1$ NOT a square.

1.3 Actual Numbers

Since Δ only depends on b we will take $a = \frac{1}{2}$ and not consider the $a = -\frac{1}{2}$ case.

Clearly the winner is $\frac{1}{2} + \frac{\sqrt{5}}{2} = \frac{1+\sqrt{5}}{2}$.