Proving That a Language Is Not Regular

KOD KOD KED KED DRA

K ロ X x 4D X X B X X B X X D X O Q O

A finite automaton knows That counting takes fingers and toes,

KORKA SERVER ORA

A finite automaton knows That counting takes fingers and toes,

But, footless and handless, It tries, never endless,

KORK EXTERNE DRAM

A finite automaton knows That counting takes fingers and toes,

But, footless and handless, It tries, never endless,

To follow n l's with $n \Omega$'s.

Three ways to represent regular languages (so far)

K ロ K K B K K B X X B X X B X X Q Q Q Q

Three ways to represent regular languages (so far) \triangleright DFA

KID KAP KID KID KID DA GA

Three ways to represent regular languages (so far)

K ロ K K B K K B X X B X X B X X Q Q Q Q

- \triangleright DFA
- \triangleright NFA

Three ways to represent regular languages (so far)

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

- \blacktriangleright DFA
- \triangleright NFA
- \blacktriangleright Regular expressions

Three ways to represent regular languages (so far)

- \blacktriangleright DFA
- \blacktriangleright NFA
- \blacktriangleright Regular expressions

To prove that a language is not regular it is easiest to use DFA's.

KORK EXTERNE DRAM

Three ways to represent regular languages (so far)

- \blacktriangleright DFA
- \blacktriangleright NFA
- \blacktriangleright Regular expressions

To prove that a language is not regular it is easiest to use DFA's.

KORKA SERVER ORA

Why?

Two Methods of Proof

K ロ K K B K K B K X B X X A X Y Q Q Q Y

Two Methods of Proof

 \triangleright Method 1: Run the DFA on many small words. By the pigeon hole principle (PHP) two of the words must finish in the same state. Then do some **magic**.

KID KAP KID KID KID DA GA

Two Methods of Proof

- \triangleright **Method 1:** Run the DFA on many small words. By the pigeon hole principle (PHP) two of the words must finish in the same state. Then do some **magic**.
- ▶ Method 2 (Pumping Lemma (PL)): Run the DFA on one long word. By the PHP the word must visit the same state twice. Then do some **magic**.

KORKAR KERKER SAGA

Method 1

KOXK@XKEXKEX E DAG

Kロト K部ト K目 K (目) - 「目」 のダび

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

To prove lower bounds for **number of states** for DFA's.

KORKARRISK I ARA

To prove lower bounds for **number of states** for DFA's. ► ${a \cup b}^* a {a \cup b}^n$:

To prove lower bounds for **number of states** for DFA's. ► ${a \cup b}^* a{a \cup b}^n$: 2^{n+1} .

To prove lower bounds for **number of states** for DFA's. ► ${a \cup b}^* a{a \cup b}^n$: 2^{n+1} . \blacktriangleright aⁿ:

To prove lower bounds for **number of states** for DFA's. ► ${a \cup b}^* a{a \cup b}^n$: 2^{n+1} . \blacktriangleright aⁿ: n.

KID X 個 X X ミ X X X X → ミ → の Q Q →

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Intuition

Intuition

▶ DFA's only have finite memory.

Intuition

- \triangleright DFA's only have finite memory.
- \triangleright A DFA has to "remember" the length of an arbitrarily long sequence of a 's when processing the b 's.

KORK EXTERNE DRAM

Intuition

- \triangleright DFA's only have finite memory.
- \triangleright A DFA has to "remember" the length of an arbitrarily long sequence of a 's when processing the b 's.

KORKA SERVER ORA

Intuition is not proof.

KID X 個 X X ミ X X X X → ミ → の Q Q →

Proof

Proof Assume L_1 is regular via DFA M with m states.

KID KIN KE KAEK LE I DAG

Proof Assume L_1 is regular via DFA M with m states. Run *M* on $a^0, a^1, a^2, \ldots, a^m$.

KID KARA KE KIEK LE KORO

Proof Assume L_1 is regular via DFA M with m states. Run *M* on $a^0, a^1, a^2, \ldots, a^m$. By PHP 2 inputs, a^i and a^j $(i \neq j)$, end in same state p .

KORKAR KERKER SAGA

Proof Assume L_1 is regular via DFA M with m states. Run *M* on $a^0, a^1, a^2, \ldots, a^m$. By PHP 2 inputs, a^i and a^j $(i \neq j)$, end in same state p . Run M on both $a^i b^i$ and $a^j b^i$

KORKAR KERKER DRA

Proof Assume L_1 is regular via DFA M with m states. Run *M* on $a^0, a^1, a^2, \ldots, a^m$. By PHP 2 inputs, a^i and a^j $(i \neq j)$, end in same state p . Run M on both $a^i b^i$ and $a^j b^i$ They will end up in the same state q .

Proof Assume L_1 is regular via DFA M with m states. Run *M* on $a^0, a^1, a^2, \ldots, a^m$. By PHP 2 inputs, a^i and a^j $(i \neq j)$, end in same state p . Run M on both $a^i b^i$ and $a^j b^i$ They will end up in the same state q . Hence M either
Proof Assume L_1 is regular via DFA M with m states. Run *M* on $a^0, a^1, a^2, \ldots, a^m$. By PHP 2 inputs, a^i and a^j $(i \neq j)$, end in same state p . Run M on both $a^i b^i$ and $a^j b^i$ They will end up in the same state q . Hence M either

KORKAR KERKER DRA

1. Accepts both $a^i b^i$ and $a^i b^i$

Proof Assume L_1 is regular via DFA M with m states. Run *M* on $a^0, a^1, a^2, \ldots, a^m$. By PHP 2 inputs, a^i and a^j $(i \neq j)$, end in same state p . Run M on both $a^i b^i$ and $a^j b^i$ They will end up in the same state q . Hence M either

KORKAR KERKER DRA

- 1. Accepts both $a^i b^i$ and $a^i b^i$
- 2. Rejects both $a^i b^i$ and $a^j b^i$

Proof Assume L_1 is regular via DFA M with m states. Run *M* on $a^0, a^1, a^2, \ldots, a^m$. By PHP 2 inputs, a^i and a^j $(i \neq j)$, end in same state p . Run M on both $a^i b^i$ and $a^j b^i$ They will end up in the same state q . Hence M either

KORKAR KERKER DRA

- 1. Accepts both $a^i b^i$ and $a^i b^i$
- 2. Rejects both $a^i b^i$ and $a^j b^i$

Either way, that is a contradiction.

Proof Assume L_1 is regular via DFA M with m states. Run *M* on $a^0, a^1, a^2, \ldots, a^m$. By PHP 2 inputs, a^i and a^j $(i \neq j)$, end in same state p . Run M on both $a^i b^i$ and $a^j b^i$ They will end up in the same state q . Hence M either

- 1. Accepts both $a^i b^i$ and $a^i b^i$
- 2. Rejects both $a^i b^i$ and $a^j b^i$

Either way, that is a contradiction.

Intuition A DFA with m states can only "remember" m pieces of information.

KORKAR KERKER DRA

Proof Assume L_1 is regular via DFA M with m states. Run *M* on $a^0, a^1, a^2, \ldots, a^m$. By PHP 2 inputs, a^i and a^j $(i \neq j)$, end in same state p . Run M on both $a^i b^i$ and $a^j b^i$ They will end up in the same state q . Hence M either

- 1. Accepts both $a^i b^i$ and $a^i b^i$
- 2. Rejects both $a^i b^i$ and $a^j b^i$

Either way, that is a contradiction.

Intuition A DFA with m states can only "remember" m pieces of information.

This idea is formalized in the Myhill-Nerode theorem.

KORKAR KERKER DRA

Proof Assume L_1 is regular via DFA M with m states. Run *M* on $a^0, a^1, a^2, \ldots, a^m$. By PHP 2 inputs, a^i and a^j $(i \neq j)$, end in same state p . Run M on both $a^i b^i$ and $a^j b^i$ They will end up in the same state q . Hence M either

- 1. Accepts both $a^i b^i$ and $a^i b^i$
- 2. Rejects both $a^i b^i$ and $a^j b^i$

Either way, that is a contradiction.

Intuition A DFA with m states can only "remember" m pieces of information.

This idea is formalized in the Myhill-Nerode theorem.

YO A CHE KEE HE ARA

We do not care.

Method 2: Pumping Lemma (PL)

KED KARD KED KED E VOQO

KOKK@KKEKKEK E 1990

Proof

K ロ X x 4D X X B X X B X X D X O Q O

Proof Assume L_1 is regular via DFA M with m states.

KID KAR KE KE KE YA GA

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^m b^m$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^m b^m$. States encountered processing a^m:

KORKARA KERKER DAGA

 $q_0, q_1, q_2, \ldots, q_{m-1}$

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^m b^m$.

KORKARA KERKER DAGA

States encountered processing a^m:

 $q_0, q_1, q_2, \ldots, q_{m-1}$ By **PHP** some state is encountered twice.

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^m b^m$. States encountered processing a^m:

 $q_0, q_1, q_2, \ldots, q_{m-1}$ By PHP some state is encountered twice. So there is a loop at that state where $k > 1$ a's are processed.

KORKARA KERKER DAGA

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^m b^m$.

States encountered processing a^m:

 $q_0, q_1, q_2, \ldots, q_{m-1}$ By PHP some state is encountered twice. So there is a loop at that state where $k > 1$ a's are processed.

 $A \cup B \cup A \cup B \cup A \cup B \cup A \cup B \cup A \cup B$

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^m b^m$.

States encountered processing a^m:

 $q_0, q_1, q_2, \ldots, q_{m-1}$ By PHP some state is encountered twice. So there is a loop at that state where $k > 1$ a's are processed.

 $a^{n+k}b^n$ is accepted by following the loop again. Contradiction.

KID X 個 X X ミ X X X X → ミ → の Q Q →

Exactly the same

Exactly the same Proof

Exactly the same Proof

Assume L_1 is regular via DFA M with m states.

Exactly the same Proof

Assume L_1 is regular via DFA M with m states. Run M on $a^m b^m$.

Exactly the same Proof

Assume L_1 is regular via DFA M with m states. Run M on $a^m b^m$.

States encountered processing a^m :

 $S_0, S_1, S_2, \ldots, S_m$

KORK EXTERNE DRAM

Exactly the same Proof

Assume L_1 is regular via DFA M with m states. Run M on $a^m b^m$.

KORKARA KERKER DAGA

States encountered processing a^m :

 $S_0, S_1, S_2, \ldots, S_m$ By PHP same state encountered twice.

Exactly the same Proof

Assume L_1 is regular via DFA M with m states. Run M on $a^m b^m$.

States encountered processing a^m :

 $S_0, S_1, S_2, \ldots, S_m$

By PHP same state encountered twice.

There is a loop at that state where $k > 1$ a's are processed.

KORKARA KERKER DAGA

 $a^{n+k}b^n$ is also accepted by following the loop again.

Exactly the same Proof

Assume L_1 is regular via DFA M with m states. Run M on $a^m b^m$.

States encountered processing a^m :

 $S_0, S_1, S_2, \ldots, S_m$

By PHP same state encountered twice.

There is a loop at that state where $k > 1$ a's are processed. $a^{n+k}b^n$ is also accepted by following the loop again. Contradiction.

KORKARA KERKER DAGA

Exactly the same Proof

Assume L_1 is regular via DFA M with m states. Run M on $a^m b^m$.

States encountered processing a^m :

 $S_0, S_1, S_2, \ldots, S_m$ By PHP same state encountered twice. There is a loop at that state where $k > 1$ a's are processed. $a^{n+k}b^n$ is also accepted by following the loop again. Contradiction.

This idea can be formalized into the pumping lemma ...

KORKARA KERKER DAGA

Exactly the same Proof

Assume L_1 is regular via DFA M with m states. Run M on $a^m b^m$.

States encountered processing a^m :

 $S_0, S_1, S_2, \ldots, S_m$ By PHP same state encountered twice. There is a loop at that state where $k > 1$ a's are processed. $a^{n+k}b^n$ is also accepted by following the loop again. Contradiction.

This idea can be formalized into the pumping lemma ...

KORKARA KERKER DAGA

... and we will do so.

KOKK@KKEKKEK E 1990

Pumping Lemma (PL) If L is regular then there exist n_0 and n_1 such that the following holds:

Pumping Lemma (PL) If L is regular then there exist n_0 and n_1 such that the following holds:

KORK ERKER ADAM ADA

For all $w \in L$, $|w| > n_0$ there exist x, y, z such that:

Pumping Lemma (PL) If L is regular then there exist n_0 and n_1 such that the following holds:

KID KAP KID KID KID DA GA

For all $w \in L$, $|w| > n_0$ there exist x, y, z such that:

1. $w = xyz$ and $y \neq e$.

Pumping Lemma (PL) If L is regular then there exist n_0 and n_1 such that the following holds:

KID KAP KID KID KID DA GA

For all $w \in L$, $|w| > n_0$ there exist x, y, z such that:

- 1. $w = xyz$ and $y \neq e$.
- 2. $|xv| < n_1$.

Pumping Lemma (PL) If L is regular then there exist n_0 and n_1 such that the following holds:

KORKARA KERKER DAGA

For all $w \in L$, $|w| > n_0$ there exist x, y, z such that:

- 1. $w = xyz$ and $y \neq e$.
- 2. $|xy| < n_1$.
- 3. For all $i \geq 0$, $xy^iz \in L$.

Pumping Lemma (PL) If L is regular then there exist n_0 and n_1 such that the following holds:

KORKARA KERKER DAGA

For all $w \in L$, $|w| > n_0$ there exist x, y, z such that:

- 1. $w = xyz$ and $y \neq e$.
- 2. $|xv| < n_1$.
- 3. For all $i \geq 0$, $xy^iz \in L$.

Proof by picture

Pumping Lemma (PL) If L is regular then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist x, y, z such that:

- 1. $w = xyz$ and $y \neq e$.
- 2. $|xy| < n_1$.
- 3. For all $i \geq 0$, $xy^iz \in L$.

Proof by picture

How We Use the PL

メロトメタトメミドメミド (ミ) の女々
How We Use the PL

We restate it in the way that we use it.

We restate it in the way that we use it. PL If L is reg then for large enough strings w in L there exist x, y, z such that:

KID KAP KID KID KID DA GA

PL If L is reg then for large enough strings w in L there exist x, y, z such that:

KORK ERKER ADAM ADA

1. $w = xyz$ and $y \neq e$.

PL If L is reg then for large enough strings w in L there exist x, y, z such that:

KID KAP KID KID KID DA GA

1.
$$
w = xyz
$$
 and $y \neq e$.

2. $|xy|$ is short.

PL If L is reg then for large enough strings w in L there exist x, y, z such that:

KORKARA KERKER DAGA

- 1. $w = xyz$ and $y \neq e$.
- 2. $|xy|$ is short.
- 3. for all *i*, $xy^{i}z \in L$.

PL If L is reg then for large enough strings w in L there exist x, y, z such that:

- 1. $w = xyz$ and $y \neq e$.
- 2. $|xy|$ is short.
- 3. for all *i*, $xy^{i}z \in L$.

We then find some *i* such that $xy'z \notin L$ for the contradiction.

KORKARA KERKER DAGA

イロトメタトメミトメミト ミニの女々

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Assume L_1 is regular.

KORK ERKER ADAM ADA

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$:

KORK ERRY ABR ADA ADA

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$: 1. $v \neq e$.

KORK ERKER ADAM ADA

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$: 1. $v \neq e$. 2. $|xy|$ is short.

KORK ERKER ADAM ADA

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$: 1. $v \neq e$.

- 2. $|xy|$ is short.
- 3. For all $i \geq 0$, $xy^iz \in L_1$.

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$:

- 1. $v \neq e$.
- 2. $|xy|$ is short.
- 3. For all $i \geq 0$, $xy^iz \in L_1$.

Take w long enough so that the xy part only has a 's.

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$: 1. $v \neq e$.

2. $|xy|$ is short.

3. For all $i \geq 0$, $xy^iz \in L_1$.

Take w long enough so that the xy part only has a 's. $x = a^j$, $y = a^k$, $z = a^{n-j-k}b^n$.

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$: 1. $v \neq e$. 2. $|xy|$ is short. 3. For all $i \geq 0$, $xy^iz \in L_1$.

Take w long enough so that the xy part only has a 's. $x = a^j, \ y = a^k, \ z = a^{n-j-k} b^n.$ Note $k \geq 1.$

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$: 1. $v \neq e$. 2. $|xy|$ is short. 3. For all $i \geq 0$, $xy^iz \in L_1$. Take w long enough so that the xy part only has a 's. $x = a^j, \ y = a^k, \ z = a^{n-j-k} b^n.$ Note $k \geq 1.$ By the PL, all of the words

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$: 1. $v \neq e$. 2. $|xy|$ is short. 3. For all $i \geq 0$, $xy^iz \in L_1$. Take w long enough so that the xy part only has a 's. $x = a^j, \ y = a^k, \ z = a^{n-j-k} b^n.$ Note $k \geq 1.$ By the PL, all of the words

KORKARA KERKER DAGA

$$
a^j\left(a^k\right)^i a^{n-j-k}b^n
$$

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$: 1. $v \neq e$. 2. $|xy|$ is short. 3. For all $i \geq 0$, $xy^iz \in L_1$. Take w long enough so that the xy part only has a 's. $x = a^j, \ y = a^k, \ z = a^{n-j-k} b^n.$ Note $k \geq 1.$ By the PL, all of the words

$$
a^j (a^k)^i a^{n-j-k} b^n = a^{n+k(i-1)} b^n
$$

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$: 1. $v \neq e$. 2. $|xy|$ is short. 3. For all $i \geq 0$, $xy^iz \in L_1$. Take w long enough so that the xy part only has a 's. $x = a^j, \ y = a^k, \ z = a^{n-j-k} b^n.$ Note $k \geq 1.$ By the PL, all of the words

$$
a^j (a^k)^i a^{n-j-k} b^n = a^{n+k(i-1)} b^n
$$

KORKARA KERKER DAGA

are in L_1 .

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$: 1. $v \neq e$. 2. $|xy|$ is short. 3. For all $i \geq 0$, $xy^iz \in L_1$. Take w long enough so that the xy part only has a 's. $x = a^j, \ y = a^k, \ z = a^{n-j-k} b^n.$ Note $k \geq 1.$ By the PL, all of the words

$$
a^j (a^k)^i a^{n-j-k} b^n = a^{n+k(i-1)} b^n
$$

KORKARA KERKER DAGA

are in L_1 . Take $i = 2$ to get

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$: 1. $v \neq e$. 2. $|xy|$ is short. 3. For all $i \geq 0$, $xy^iz \in L_1$. Take w long enough so that the xy part only has a 's. $x = a^j, \ y = a^k, \ z = a^{n-j-k} b^n.$ Note $k \geq 1.$ By the PL, all of the words

$$
a^j (a^k)^i a^{n-j-k} b^n = a^{n+k(i-1)} b^n
$$

are in L_1 . Take $i = 2$ to get

$$
a^{n+k}b^n\in L_1
$$

KED KARD KED KED E YORN

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$: 1. $v \neq e$. 2. $|xy|$ is short. 3. For all $i \geq 0$, $xy^iz \in L_1$. Take w long enough so that the xy part only has a 's. $x = a^j, \ y = a^k, \ z = a^{n-j-k} b^n.$ Note $k \geq 1.$ By the PL, all of the words

$$
a^j (a^k)^i a^{n-j-k} b^n = a^{n+k(i-1)} b^n
$$

are in L_1 . Take $i = 2$ to get

$$
a^{n+k}b^n\in L_1
$$

KORKARA KERKER DAGA

Contradiction since $k \geq 1$.

Proof: Same Proof as L_1 **not Reg**: Still look at $a^m b^m$. **Key** PL says for ALL long enough $w \in L$.

KORKARA KERKER DAGA

K ロ K K B K K B K X B X X A X X B X X A X C

Think about.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Think about.

PL Does Not Help. When you increase the number of y 's there is no way to control it so carefully to make the number of a's EQUAL the number of b's.

KORKARA KERKER DAGA

Think about.

PL Does Not Help. When you increase the number of y 's there is no way to control it so carefully to make the number of a's EQUAL the number of b's.

KORKARA KERKER DAGA

So what do to?

Think about.

PL Does Not Help. When you increase the number of y 's there is no way to control it so carefully to make the number of a's EQUAL the number of b's.

So what do to?

If L_3 is regular then $L_2 = \overline{L_3}$ is regular. But we know that L_2 is not regular. DONE!

KORKAR KERKER DRA

KID KARA KE KA E KO SOV

Intuition Perfect squares keep getting further apart.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Intuition Perfect squares keep getting further apart. PL says you can always add some constant k to produce a word in the language.

KORKARA KERKER DAGA

Intuition Perfect squares keep getting further apart. PL says you can always add some constant k to produce a word in the language.

KORKARA KERKER DAGA

Proof

Intuition Perfect squares keep getting further apart. PL says you can always add some constant k to produce a word in the language.

Proof

By PL for long enough $a^{n^2} \in L_4$ there exist $x = a^j$, $y = a^k$, $z=a^\ell$ with $xyz=a^{n^2}.$ Also $a^j(a^k)^i a^\ell \in L_4.$ (Note $k\geq 1.$)

KORKAR KERKER ST VOOR

Intuition Perfect squares keep getting further apart. PL says you can always add some constant k to produce a word in the language.

Proof

By PL for long enough $a^{n^2} \in L_4$ there exist $x = a^j$, $y = a^k$, $z=a^\ell$ with $xyz=a^{n^2}.$ Also $a^j(a^k)^i a^\ell \in L_4.$ (Note $k\geq 1.$)

$$
(\forall i \geq 0)[j + ik + \ell = n^2 + ik \text{ is a square}].
$$

KORKAR KERKER ST VOOR

Intuition Perfect squares keep getting further apart. PL says you can always add some constant k to produce a word in the language.

Proof

By PL for long enough $a^{n^2} \in L_4$ there exist $x = a^j$, $y = a^k$, $z=a^\ell$ with $xyz=a^{n^2}.$ Also $a^j(a^k)^i a^\ell \in L_4.$ (Note $k\geq 1.$)

$$
(\forall i \geq 0)[j + ik + \ell = n^2 + ik \text{ is a square}].
$$

KORKAR KERKER ST VOOR

So n^2 , $n^2 + k$, $n^2 + 2k$, ... are all squares.

Intuition Perfect squares keep getting further apart. PL says you can always add some constant k to produce a word in the language.

Proof

By PL for long enough $a^{n^2} \in L_4$ there exist $x = a^j$, $y = a^k$, $z=a^\ell$ with $xyz=a^{n^2}.$ Also $a^j(a^k)^i a^\ell \in L_4.$ (Note $k\geq 1.$)

$$
(\forall i \geq 0)[j + ik + \ell = n^2 + ik \text{ is a square}].
$$

KORKAR KERKER ST VOOR

So n^2 , $n^2 + k$, $n^2 + 2k$, ... are all squares. See slide for exciting finish!
So n^2 , $n^2 + k$, $n^2 + 2k$, . . . are all squares. $k \geq 1$.

KORK STRATER STRACK

So
$$
n^2
$$
, $n^2 + k$, $n^2 + 2k$,... are all squares. $k \ge 1$.
\n $n^2 + k \ge (n + 1)^2 = n^2 + 2n + 1$.

KID X 個 X X ミ X X X X → ミ → の Q Q →

So n^2 , $n^2 + k$, $n^2 + 2k$, . . . are all squares. $k \geq 1$. $n^2 + k \ge (n+1)^2 = n^2 + 2n + 1$. So $k \ge 2n + 1$.

KORK ERKER ADAM ADA

So n^2 , $n^2 + k$, $n^2 + 2k$, . . . are all squares. $k \geq 1$. $n^2 + k \ge (n+1)^2 = n^2 + 2n + 1$. So $k \ge 2n + 1$. $n^2 + 2k \ge (n+2)^2 = n^2 + 4n + 4$.

So n^2 , $n^2 + k$, $n^2 + 2k$, . . . are all squares. $k \geq 1$. $n^2 + k \ge (n+1)^2 = n^2 + 2n + 1$. So $k \ge 2n + 1$. $n^2 + 2k \ge (n+2)^2 = n^2 + 4n + 4$. So $k \ge 2n + 2$.

So n^2 , $n^2 + k$, $n^2 + 2k$, . . . are all squares. $k \geq 1$. $n^2 + k \ge (n+1)^2 = n^2 + 2n + 1$. So $k \ge 2n + 1$. $n^2 + 2k \ge (n+2)^2 = n^2 + 4n + 4$. So $k \ge 2n + 2$

So
$$
n^2
$$
, $n^2 + k$, $n^2 + 2k$,... are all squares. $k \ge 1$.
\n $n^2 + k \ge (n + 1)^2 = n^2 + 2n + 1$. So $k \ge 2n + 1$.
\n $n^2 + 2k \ge (n + 2)^2 = n^2 + 4n + 4$. So $k \ge 2n + 2$.
\n:
\nSo
\n $(\forall i \ge 1)[n^2 + ik \ge (n + i)^2 = n^2 + 2in + i^2]$.

KID X 個 X X ミ X X X X → ミ → の Q Q →

So
$$
n^2
$$
, $n^2 + k$, $n^2 + 2k$,... are all squares. $k \ge 1$.
\n $n^2 + k \ge (n + 1)^2 = n^2 + 2n + 1$. So $k \ge 2n + 1$.
\n $n^2 + 2k \ge (n + 2)^2 = n^2 + 4n + 4$. So $k \ge 2n + 2$.
\n \vdots
\nSo
\n $(\forall i \ge 1)[n^2 + ik \ge (n + i)^2 = n^2 + 2in + i^2]$. So
\n $(\forall i)[k \ge 2n + i]$.

KID X 個 X X ミ X X X X → ミ → の Q Q →

So
$$
n^2
$$
, $n^2 + k$, $n^2 + 2k$,... are all squares. $k \ge 1$.
\n $n^2 + k \ge (n + 1)^2 = n^2 + 2n + 1$. So $k \ge 2n + 1$.
\n $n^2 + 2k \ge (n + 2)^2 = n^2 + 4n + 4$. So $k \ge 2n + 2$.
\n
\n
\nSo
\n $(\forall i \ge 1)[n^2 + ik \ge (n + i)^2 = n^2 + 2in + i^2]$. So
\n $(\forall i)[k \ge 2n + i]$.
\nSo *k* is bigger than any natural number!

イロト 4 御 ト 4 差 ト 4 差 ト - 差 - 約 9 Q Q

So
$$
n^2
$$
, $n^2 + k$, $n^2 + 2k$,... are all squares. $k \ge 1$.
\n $n^2 + k \ge (n + 1)^2 = n^2 + 2n + 1$. So $k \ge 2n + 1$.
\n $n^2 + 2k \ge (n + 2)^2 = n^2 + 4n + 4$. So $k \ge 2n + 2$.
\n
\n
\nSo
\n $(\forall i \ge 1)[n^2 + ik \ge (n + i)^2 = n^2 + 2in + i^2]$. So
\n $(\forall i)[k \ge 2n + i]$.
\nSo *k* is bigger than any natural number!
\nContradiction.

イロト 4 御 ト 4 差 ト 4 差 ト - 差 - 約 9 Q Q

Kロトメ部トメミトメミト ミニの女々

Intuition Primes keep getting further apart on average.

KID KAR KE KE KE KE YA GA

Intuition Primes keep getting further apart on average. PL says you always add some constant k to produce a word in the language.

KORK ERKER ADAM ADA

Intuition Primes keep getting further apart on average. PL says you always add some constant k to produce a word in the language. Too hard. Easier proof.

Intuition Primes keep getting further apart on average. PL says you always add some constant k to produce a word in the language. Too hard. Easier proof.

Think about.

Intuition Primes keep getting further apart on average. PL says you always add some constant k to produce a word in the language. Too hard. Easier proof.

Think about.

By PL, for large p , $a^p \in L_5$ \exists $x = a^j$, $y = a^k$, $z = a^\ell$ such that

$$
a^{j}(a^{k})^{i}a^{\ell} \in L_{5}
$$

$$
(\forall i \geq 0)[j + ik + \ell \text{ is prime}].
$$

KORKAR KERKER DRA

Intuition Primes keep getting further apart on average. PL says you always add some constant k to produce a word in the language. Too hard. Easier proof.

Think about.

By PL, for large p , $a^p \in L_5$ \exists $x = a^j$, $y = a^k$, $z = a^\ell$ such that

KORKAR KERKER DRA

$$
a^{j}(a^{k})^{i}a^{\ell} \in L_{5}
$$

$$
(\forall i \geq 0)[j + ik + \ell \text{ is prime}].
$$

So, $p, p + k, p + 2k, \ldots, p + pk$ are all prime.

Intuition Primes keep getting further apart on average. PL says you always add some constant k to produce a word in the language. Too hard. Easier proof.

Think about.

By PL, for large p , $a^p \in L_5$ \exists $x = a^j$, $y = a^k$, $z = a^\ell$ such that

KORKARA KERKER DAGA

$$
a^{j}(a^{k})^{i}a^{\ell} \in L_{5}
$$

$$
(\forall i \geq 0)[j + ik + \ell \text{ is prime}].
$$

So, $p, p + k, p + 2k, \ldots, p + pk$ are all prime. But $p + pk = p(k + 1)$.

Intuition Primes keep getting further apart on average. PL says you always add some constant k to produce a word in the language. Too hard. Easier proof.

Think about.

By PL, for large p , $a^p \in L_5$ \exists $x = a^j$, $y = a^k$, $z = a^\ell$ such that

$$
a^{j}(a^{k})^{i}a^{\ell} \in L_{5}
$$

$$
(\forall i \geq 0)[j + ik + \ell \text{ is prime}].
$$

KORKAR KERKER DRA

So, $p, p + k, p + 2k, \ldots, p + pk$ are all prime. But $p + pk = p(k + 1)$. Contradiction.

 $L_6 = \{#_a(w) > #_b(w) \}$ is Not Regular

We will be brief here.

 $L_6 = \{ \#_a(w) > \#_b(w) \}$ is Not Regular

We will be brief here. Take $w=b^na^{n+1}$, long enough so the y-part is in the b 's.

KORK ERKER ADAM ADA

 $L_6 = \{ \#_a(w) > \#_b(w) \}$ is Not Regular

We will be brief here. Take $w=b^na^{n+1}$, long enough so the y-part is in the b 's. Pump the y to get more b 's than a 's.

K ロ K K B K K B K X B X X A K Y Q Q Q Y

Think about.

KID KAR KE KE KE KE YA GA

Think about.

Problematic Can take w long and pump a's, but that won't get out of the language.

Think about.

Problematic Can take w long and pump a's, but that won't get out of the language. So what to do? Revise PL

Think about.

Problematic Can take w long and pump a's, but that won't get out of the language. So what to do? Revise PL PL had a bound on $|xy|$.

Think about.

Problematic Can take w long and pump a's, but that won't get out of the language. So what to do? Revise PL PL had a bound on $|xy|$. Can **also** bound $|yz|$ by same proof.

KORK EXTERNE DRAM

Think about.

Problematic Can take w long and pump a's, but that won't get out of the language.

So what to do? Revise PL

PL had a bound on $|xy|$.

Can **also** bound $|yz|$ by same proof.

Do that and then you can get v to be all b 's, pump b 's, and get out of the language.

Kロトメ部トメミトメミト ミニの女々

Think about.

K ロ X x 4D X X B X X B X X D X Q Q Q Q Q

Think about.

KID KAP KID KID KID DA GA

Problematic Neither pumping on the left or on the right works.

Think about.

Problematic Neither pumping on the left or on the right works. **So what to do?** Let's go back to the pumping lemma with a carefully chosen string.

Think about.

Problematic Neither pumping on the left or on the right works.

So what to do? Let's go back to the pumping lemma with a carefully chosen string.

KORKARA KERKER DAGA

 $w = a^n b^{n-1} c^n$.

Think about.

Problematic Neither pumping on the left or on the right works.

So what to do? Let's go back to the pumping lemma with a carefully chosen string.

KORKARA KERKER DAGA

 $w = a^n b^{n-1} c^n$. $x = a^j$, $y = a^k$, $z = a^{n-j-k}b^{n-1}c^n$.

Think about.

Problematic Neither pumping on the left or on the right works.

So what to do? Let's go back to the pumping lemma with a carefully chosen string.

KORKARA KERKER DAGA

 $w = a^n b^{n-1} c^n$. $x = a^j$, $y = a^k$, $z = a^{n-j-k}b^{n-1}c^n$. For all $i \geq 0$, $xy^iz \in L_8$.
Think about.

Problematic Neither pumping on the left or on the right works.

So what to do? Let's go back to the pumping lemma with a carefully chosen string.

$$
w = anbn-1cn.
$$

x = a^j, y = a^k, z = a^{n-j-k}bⁿ⁻¹cⁿ.
For all $i \ge 0$, $xyiz \in L_8$.

$$
xy^iz = a^{j+ik+(n-j-k)}b^{n-1}c^n
$$

KORKA SERVER ORA

$$
xy^iz = a^{j+ik+(n-j-k)}b^{n-1}c^n
$$

イロトメタトメミトメミト ミニの女々

$$
xy^iz = a^{j+ik+(n-j-k)}b^{n-1}c^n
$$

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

For all i $xy^{i}z = a^{j+ik+(n-j-k)}b^{n-1}c^{n} \in L_{8}$.

$$
xy^iz = a^{j+ik+(n-j-k)}b^{n-1}c^n
$$

KORK EXTERNE DRAM

For all i $xy^{i}z = a^{j+ik+(n-j-k)}b^{n-1}c^{n} \in L_{8}$. **Key** We are used to thinking of i large.

$$
xy^iz = a^{j+ik+(n-j-k)}b^{n-1}c^n
$$

KORK EXTERNE DRAM

For all i $xy^{i}z = a^{j+ik+(n-j-k)}b^{n-1}c^{n} \in L_{8}$. **Key** We are used to thinking of i large. But we can also take $i = 0$.

$$
xy^iz = a^{j+ik+(n-j-k)}b^{n-1}c^n
$$

KORK EXTERNE DRAM

For all i $xy^{i}z = a^{j+ik+(n-j-k)}b^{n-1}c^{n} \in L_{8}$. **Key** We are used to thinking of i large. But we can also take $i = 0$. cut out that part of the word. We take $i = 0$ to get

$$
xy^iz = a^{j+ik+(n-j-k)}b^{n-1}c^n
$$

For all i $xy^{i}z = a^{j+ik+(n-j-k)}b^{n-1}c^{n} \in L_{8}$. **Key** We are used to thinking of i large. But we can also take $i = 0$. cut out that part of the word. We take $i = 0$ to get

$$
xy^0z = a^{n-k}b^{n-1}c^n
$$

KORK EXTERNE DRAM

$$
xy^iz = a^{j+ik+(n-j-k)}b^{n-1}c^n
$$

For all i $xy^{i}z = a^{j+ik+(n-j-k)}b^{n-1}c^{n} \in L_{8}$. **Key** We are used to thinking of i large. But we can also take $i = 0$. cut out that part of the word. We take $i = 0$ to get

$$
xy^0z=a^{n-k}b^{n-1}c^n
$$

Since $k\geq 1$, we have that $\#_{{\mathsf a}}({\mathsf x} {\mathsf y}^0{\mathsf z})<{\mathsf n}\leq {\mathsf n}-1=\#_{{\mathsf b}}({\mathsf x} {\mathsf y}^0{\mathsf z}).$ Hence $xy^0z \notin L_8$.

KORKA SERVER ORA

$$
xy^iz = a^{j+ik+(n-j-k)}b^{n-1}c^n
$$

For all i $xy^{i}z = a^{j+ik+(n-j-k)}b^{n-1}c^{n} \in L_{8}$. **Key** We are used to thinking of i large. But we can also take $i = 0$.

cut out that part of the word. We take $i = 0$ to get

$$
xy^0z = a^{n-k}b^{n-1}c^n
$$

Since $k\geq 1$, we have that $\#_{{\mathsf a}}({\mathsf x} {\mathsf y}^0{\mathsf z})<{\mathsf n}\leq {\mathsf n}-1=\#_{{\mathsf b}}({\mathsf x} {\mathsf y}^0{\mathsf z}).$ Hence $xy^0z \notin L_8$. Contradiction.

KORKARA KERKER DAGA

$i = 0$ Case as a Picture

イロト イ押 トイヨ トイヨ トー \Rightarrow OQ

Lower Bounds: Looking Ahead

- 1. DFA's are simple enough devices that we can actually prove languages are not regular
- 2. We will later see that Context Free Grammars are simple enough devices that we can prove Languages are not Context Free.
- 3. Poly-bounded Turing Machines seem to be complicated devices, so proving $P\neq NP$ seems to be hard.

KORKARA KERKER DAGA

Lower Bounds: Looking Ahead

- 1. DFA's are simple enough devices that we can actually prove languages are not regular
- 2. We will later see that Context Free Grammars are simple enough devices that we can prove Languages are not Context Free.
- 3. Poly-bounded Turing Machines seem to be complicated devices, so proving $P\neq NP$ seems to be hard. However, I expect Isaac, Adam, and Sam will work it out by the end of the semester.
- 4. Proving problems undecidable is surprisingly easy since such proofs do not depend on the details of the model of computation.

KORKAR KERKER SAGA