Proving That a Language Is Not Regular

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

<ロト < 置 > < 置 > < 置 > < 置 > の < @</p>

A finite automaton knows That counting takes fingers and toes,

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

A finite automaton knows That counting takes fingers and toes,

But, footless and handless, It tries, never endless,

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- A finite automaton knows That counting takes fingers and toes,
- But, footless and handless, It tries, never endless,
- To follow n l's with n O's.

Three ways to represent regular languages (so far)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Three ways to represent regular languages (so far)▶ DFA

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Three ways to represent regular languages (so far)

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへで

- DFA
- ► NFA

Three ways to represent regular languages (so far)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

- DFA
- NFA
- Regular expressions

Three ways to represent regular languages (so far)

- DFA
- NFA
- Regular expressions

To prove that a language is not regular it is easiest to use DFA's.

Three ways to represent regular languages (so far)

- DFA
- NFA
- Regular expressions

To prove that a language is not regular it is easiest to use DFA's.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Why?

Two Methods of Proof

▲□▶▲□▶▲□▶▲□▶ □ りへぐ

Two Methods of Proof

Method 1: Run the DFA on many small words. By the pigeon hole principle (PHP) two of the words must finish in the same state. Then do some magic.

Two Methods of Proof

- Method 1: Run the DFA on many small words. By the pigeon hole principle (PHP) two of the words must finish in the same state. Then do some magic.
- Method 2 (Pumping Lemma (PL)): Run the DFA on one long word. By the PHP the word must visit the same state twice. Then do some magic.

Method 1

<ロト (個) (目) (目) (日) (の)</p>

・ロト・日本・日本・日本・日本

Have already used Method 1.

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

To prove lower bounds for number of states for DFA's.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

To prove lower bounds for number of states for DFA's.
 {a ∪ b}*a{a ∪ b}ⁿ:

*ロト *目 * * * * * * * * * * * * * * *

To prove lower bounds for number of states for DFA's.
 {a ∪ b}*a{a ∪ b}ⁿ: 2ⁿ⁺¹.

To prove lower bounds for number of states for DFA's.
{a∪b}*a{a∪b}ⁿ: 2ⁿ⁺¹.
aⁿ:

To prove lower bounds for number of states for DFA's.
{a∪b}*a{a∪b}ⁿ: 2ⁿ⁺¹.
aⁿ: n.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Intuition

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Intuition

► DFA's only have finite memory.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Intuition

- DFA's only have finite memory.
- A DFA has to "remember" the length of an arbitrarily long sequence of a's when processing the b's.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Intuition

- DFA's only have finite memory.
- A DFA has to "remember" the length of an arbitrarily long sequence of a's when processing the b's.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Intuition is not proof.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Proof

Proof Assume L_1 is regular via DFA M with m states.

・ロト・日本・モト・モト・モー うへぐ

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^0, a^1, a^2, \ldots, a^m$.

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^0, a^1, a^2, \ldots, a^m$. By **PHP** 2 inputs, a^i and a^j $(i \neq j)$, end in same state p.

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^0, a^1, a^2, \ldots, a^m$. By **PHP** 2 inputs, a^i and a^j $(i \neq j)$, end in same state p. Run M on both $a^i b^i$ and $a^j b^i$

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^0, a^1, a^2, \ldots, a^m$. By **PHP** 2 inputs, a^i and a^j $(i \neq j)$, end in same state p. Run M on both $a^i b^i$ and $a^j b^i$ They will end up in the same state q.

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^0, a^1, a^2, \ldots, a^m$. By **PHP** 2 inputs, a^i and a^j $(i \neq j)$, end in same state p. Run M on both $a^i b^i$ and $a^j b^i$ They will end up in the same state q. Hence M either
Proof Assume L_1 is regular via DFA M with m states. Run M on $a^0, a^1, a^2, \ldots, a^m$. By **PHP** 2 inputs, a^i and a^j $(i \neq j)$, end in same state p. Run M on both $a^i b^i$ and $a^j b^i$ They will end up in the same state q. Hence M either

ション ふぼう メリン メリン しょうくしゃ

1. Accepts both $a^i b^i$ and $a^j b^i$

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^0, a^1, a^2, \ldots, a^m$. By **PHP** 2 inputs, a^i and a^j $(i \neq j)$, end in same state p. Run M on both $a^i b^i$ and $a^j b^i$ They will end up in the same state q. Hence M either

ション ふぼう メリン メリン しょうくしゃ

- 1. Accepts both $a^i b^i$ and $a^j b^i$
- 2. Rejects both $a^i b^i$ and $a^j b^i$

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^0, a^1, a^2, \ldots, a^m$. By **PHP** 2 inputs, a^i and a^j $(i \neq j)$, end in same state p. Run M on both $a^i b^i$ and $a^j b^i$ They will end up in the same state q. Hence M either

ション ふぼう メリン メリン しょうくしゃ

- 1. Accepts both $a^i b^i$ and $a^j b^i$
- 2. Rejects both $a^i b^i$ and $a^j b^i$

Either way, that is a contradiction.

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^0, a^1, a^2, \ldots, a^m$. By **PHP** 2 inputs, a^i and a^j $(i \neq j)$, end in same state p. Run M on both $a^i b^i$ and $a^j b^i$ They will end up in the same state q. Hence M either

- 1. Accepts both $a^i b^i$ and $a^j b^i$
- 2. Rejects both $a^i b^i$ and $a^j b^i$

Either way, that is a contradiction.

Intuition A DFA with *m* states can only "remember" *m* pieces of information.

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^0, a^1, a^2, \ldots, a^m$. By **PHP** 2 inputs, a^i and a^j $(i \neq j)$, end in same state p. Run M on both $a^i b^i$ and $a^j b^i$ They will end up in the same state q. Hence M either

- 1. Accepts both $a^i b^i$ and $a^j b^i$
- 2. Rejects both $a^i b^i$ and $a^j b^i$

Either way, that is a contradiction.

Intuition A DFA with *m* states can only "remember" *m* pieces of information.

This idea is formalized in the Myhill-Nerode theorem.

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^0, a^1, a^2, \ldots, a^m$. By **PHP** 2 inputs, a^i and a^j $(i \neq j)$, end in same state p. Run M on both $a^i b^i$ and $a^j b^i$ They will end up in the same state q. Hence M either

- 1. Accepts both $a^i b^i$ and $a^j b^i$
- 2. Rejects both $a^i b^i$ and $a^j b^i$

Either way, that is a contradiction.

Intuition A DFA with *m* states can only "remember" *m* pieces of information.

This idea is formalized in the Myhill-Nerode theorem.

We do not care.

Method 2: Pumping Lemma (PL)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Proof

Proof Assume L_1 is regular via DFA M with m states.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^m b^m$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^m b^m$.

States encountered processing a^m :

 $q_0, q_1, q_2, \ldots, q_{m-1}$

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^m b^m$.

States encountered processing a^m :

 $q_0, q_1, q_2, \dots, q_{m-1}$ By **PHP** some state is encountered twice.

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^m b^m$.

States encountered processing a^m :

 $q_0, q_1, q_2, \ldots, q_{m-1}$ By **PHP** some state is encountered twice. So there is a loop at that state where $k \ge 1$ a's are processed.

ション ふぼう メリン メリン しょうくしゃ

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^m b^m$.

States encountered processing a^m :

 $q_0, q_1, q_2, \dots, q_{m-1}$ By **PHP** some state is encountered twice. So there is a loop at that state where $k \ge 1$ a's are processed.

イロト イポト イヨト イヨト 二日

Proof Assume L_1 is regular via DFA M with m states. Run M on $a^m b^m$.

States encountered processing a^m :

 $q_0, q_1, q_2, \ldots, q_{m-1}$ By **PHP** some state is encountered twice. So there is a loop at that state where $k \ge 1$ a's are processed.

 $a^{n+k}b^n$ is accepted by following the loop again. Contradiction.

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ◆○◆◆

Exactly the same

Exactly the same **Proof**

Exactly the same **Proof**

Assume L_1 is regular via DFA M with m states.

Exactly the same **Proof**

Assume L_1 is regular via DFA *M* with *m* states. **Run** *M* **on** $a^m b^m$.

Exactly the same **Proof**

Assume L_1 is regular via DFA *M* with *m* states. **Run** *M* **on** $a^m b^m$.

States encountered processing a^m :

 $s_0, s_1, s_2, \ldots, s_m$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Exactly the same Proof

Assume L_1 is regular via DFA *M* with *m* states. **Run** *M* **on** $a^m b^m$.

ション ふぼう メリン メリン しょうくしゃ

States encountered processing a^m :

 $s_0, s_1, s_2, \dots, s_m$ By **PHP** same state encountered twice.

Exactly the same **Proof**

Assume L_1 is regular via DFA *M* with *m* states. **Run** *M* **on** $a^m b^m$.

States encountered processing a^m :

 $s_0, s_1, s_2, \ldots, s_m$ By **PHP** same state encountered twice. There is a loop at that state where $k \ge 1$ a's are processed. $a^{n+k}b^n$ is also accepted by following the loop again.

Exactly the same Proof

Assume L_1 is regular via DFA *M* with *m* states. **Run** *M* **on** $a^m b^m$.

States encountered processing a^m :

 $s_0, s_1, s_2, \ldots, s_m$ By **PHP** same state encountered twice. There is a loop at that state where $k \ge 1$ a's are processed. $a^{n+k}b^n$ is also accepted by following the loop again. Contradiction.

Exactly the same **Proof**

Assume L_1 is regular via DFA *M* with *m* states. **Run** *M* **on** $a^m b^m$.

States encountered processing a^m :

 $s_0, s_1, s_2, \ldots, s_m$ By **PHP** same state encountered twice. There is a loop at that state where $k \ge 1$ a's are processed. $a^{n+k}b^n$ is also accepted by following the loop again. Contradiction.

This idea can be formalized into the pumping lemma ...

Exactly the same **Proof**

Assume L_1 is regular via DFA *M* with *m* states. **Run** *M* **on** $a^m b^m$.

States encountered processing a^m :

 $s_0, s_1, s_2, \ldots, s_m$ By **PHP** same state encountered twice. There is a loop at that state where $k \ge 1$ a's are processed. $a^{n+k}b^n$ is also accepted by following the loop again. Contradiction.

This idea can be formalized into the pumping lemma ...

... and we will do so.

◆□▶◆圖▶◆≧▶◆≧▶ ≧ ∽940

Pumping Lemma (PL) If *L* is regular then there exist n_0 and n_1 such that the following holds:

Pumping Lemma (PL) If *L* is regular then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist x, y, z such that:

Pumping Lemma (PL) If *L* is regular then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist x, y, z such that:

1. w = xyz and $y \neq e$.

Pumping Lemma (PL) If *L* is regular then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist x, y, z such that:

- 1. w = xyz and $y \neq e$.
- 2. $|xy| \leq n_1$.

Pumping Lemma (PL) If *L* is regular then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist x, y, z such that:

- 1. w = xyz and $y \neq e$.
- 2. $|xy| \leq n_1$.
- 3. For all $i \ge 0$, $xy^i z \in L$.

Pumping Lemma (PL) If *L* is regular then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist x, y, z such that:

- 1. w = xyz and $y \neq e$.
- 2. $|xy| \leq n_1$.
- 3. For all $i \ge 0$, $xy^i z \in L$.

Proof by picture

Pumping Lemma (PL) If *L* is regular then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist x, y, z such that:

- 1. w = xyz and $y \neq e$.
- 2. $|xy| \leq n_1$.
- 3. For all $i \ge 0$, $xy^i z \in L$.

Proof by picture

How We Use the PL
How We Use the PL

We restate it in the way that we use it.

We restate it in the way that we use it. **PL** If *L* is reg then for large enough strings w in *L* there exist x, y, z such that:

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

PL If *L* is reg then for large enough strings w in *L* there exist x, y, z such that:

1. w = xyz and $y \neq e$.

PL If *L* is reg then for large enough strings w in *L* there exist x, y, z such that:

1.
$$w = xyz$$
 and $y \neq e$.

2. |xy| is short.

PL If *L* is reg then for large enough strings w in *L* there exist x, y, z such that:

- 1. w = xyz and $y \neq e$.
- 2. |xy| is short.
- 3. for all $i, xy^i z \in L$.

PL If *L* is reg then for large enough strings w in *L* there exist x, y, z such that:

- 1. w = xyz and $y \neq e$.
- 2. |xy| is short.
- 3. for all i, $xy^i z \in L$.

We then find some *i* such that $xy^i z \notin L$ for the contradiction.

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Assume L_1 is regular.

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$:

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$: **1**. $y \neq e$.

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$: 1. $y \neq e$. 2. |xy| is short.

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$:

- 1. $y \neq e$.
- 2. |xy| is short.
- 3. For all $i \ge 0$, $xy^i z \in L_1$.

Assume L_1 is regular.

- By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$:
 - 1. $y \neq e$.
 - 2. |xy| is short.
 - 3. For all $i \ge 0$, $xy^i z \in L_1$.

Take w long enough so that the xy part only has a's.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$:

- 1. $y \neq e$.
- 2. |xy| is short.
- 3. For all $i \ge 0$, $xy^i z \in L_1$.

Take *w* long enough so that the *xy* part only has *a*'s. $x = a^{j}$, $y = a^{k}$, $z = a^{n-j-k}b^{n}$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$: 1. $y \neq e$. 2. |xy| is short. 3. For all $i \geq 0$, $xy^i z \in L_1$. Take w long enough so that the xy part only has a's.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

 $x = a^j$, $y = a^k$, $z = a^{n-j-k}b^n$. Note $k \ge 1$.

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$: 1. $y \neq e$. 2. |xy| is short. 3. For all $i \ge 0$, $xy^i z \in L_1$. Take *w* long enough so that the *xy* part only has *a*'s. $x = a^j$, $y = a^k$, $z = a^{n-j-k}b^n$. Note $k \ge 1$. By the PL, all of the words

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$: 1. $y \neq e$. 2. |xy| is short. 3. For all $i \ge 0$, $xy^i z \in L_1$. Take *w* long enough so that the *xy* part only has *a*'s. $x = a^j$, $y = a^k$, $z = a^{n-j-k}b^n$. Note $k \ge 1$. By the PL, all of the words

$$a^{j}\left(a^{k}\right)^{i}a^{n-j-k}b^{n}$$

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$: 1. $y \neq e$. 2. |xy| is short. 3. For all $i \ge 0$, $xy^i z \in L_1$. Take w long enough so that the xy part only has a's. $x = a^j$, $y = a^k$, $z = a^{n-j-k}b^n$. Note $k \ge 1$. By the PL, all of the words

$$a^{j}\left(a^{k}
ight)^{i}a^{n-j-k}b^{n} = a^{n+k(i-1)}b^{n}$$

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$: 1. $y \neq e$. 2. |xy| is short. 3. For all $i \ge 0$, $xy^i z \in L_1$. Take w long enough so that the xy part only has a's. $x = a^j$, $y = a^k$, $z = a^{n-j-k}b^n$. Note $k \ge 1$. By the PL, all of the words

$$a^{j}\left(a^{k}
ight)^{i}a^{n-j-k}b^{n} = a^{n+k(i-1)}b^{n}$$

ション ふぼう メリン メリン しょうくしゃ

are in L_1 .

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$: 1. $y \neq e$. 2. |xy| is short. 3. For all $i \ge 0$, $xy^i z \in L_1$. Take w long enough so that the xy part only has a's. $x = a^j$, $y = a^k$, $z = a^{n-j-k}b^n$. Note $k \ge 1$. By the PL, all of the words

$$a^{j}\left(a^{k}
ight)^{i}a^{n-j-k}b^{n} = a^{n+k(i-1)}b^{n}$$

ション ふぼう メリン メリン しょうくしゃ

are in L_1 . Take i = 2 to get

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$: 1. $y \neq e$. 2. |xy| is short. 3. For all $i \ge 0$, $xy^i z \in L_1$. Take *w* long enough so that the *xy* part only has *a*'s. $x = a^j$, $y = a^k$, $z = a^{n-j-k}b^n$. Note $k \ge 1$. By the PL, all of the words

$$a^{j}\left(a^{k}
ight)^{i}a^{n-j-k}b^{n} = a^{n+k(i-1)}b^{n}$$

are in L_1 . Take i = 2 to get

$$a^{n+k}b^n \in L_1$$

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$: 1. $y \neq e$. 2. |xy| is short. 3. For all $i \ge 0$, $xy^i z \in L_1$. Take w long enough so that the xy part only has a's. $x = a^i$, $y = a^k$, $z = a^{n-j-k}b^n$. Note $k \ge 1$. By the PL, all of the words

$$a^{j}\left(a^{k}
ight)^{i}a^{n-j-k}b^{n} = a^{n+k(i-1)}b^{n}$$

are in L_1 . Take i = 2 to get

$$a^{n+k}b^n \in L_1$$

ション ふぼう メリン メリン しょうくしゃ

Contradiction since $k \ge 1$.

Proof: Same Proof as L_1 **not Reg**: Still look at $a^m b^m$. **Key** PL says for ALL long enough $w \in L$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ◆○▶

Think about.

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Think about.

PL Does Not Help. When you increase the number of *y*'s there is no way to control it so carefully to make the number of *a*'s EQUAL the number of *b*'s.

Think about.

PL Does Not Help. When you increase the number of *y*'s there is no way to control it so carefully to make the number of *a*'s EQUAL the number of *b*'s. So what do to?

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Think about.

PL Does Not Help. When you increase the number of *y*'s there is no way to control it so carefully to make the number of *a*'s EQUAL the number of *b*'s.

So what do to?

If L_3 is regular then $L_2 = \overline{L_3}$ is regular. But we know that L_2 is not regular. DONE!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Intuition Perfect squares keep getting further apart.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Intuition Perfect squares keep getting further apart. PL says you can always add some constant k to produce a word in the language.

Intuition Perfect squares keep getting further apart. PL says you can always add some constant k to produce a word in the language.

ション ふぼう メリン メリン しょうくしゃ

Proof

Intuition Perfect squares keep getting further apart. PL says you can always add some constant k to produce a word in the language.

Proof

By PL for long enough $a^{n^2} \in L_4$ there exist $x = a^j$, $y = a^k$, $z = a^\ell$ with $xyz = a^{n^2}$. Also $a^j(a^k)^i a^\ell \in L_4$. (Note $k \ge 1$.)

Intuition Perfect squares keep getting further apart. PL says you can always add some constant k to produce a word in the language.

Proof

By PL for long enough $a^{n^2} \in L_4$ there exist $x = a^j$, $y = a^k$, $z = a^\ell$ with $xyz = a^{n^2}$. Also $a^j(a^k)^i a^\ell \in L_4$. (Note $k \ge 1$.)

$$(\forall i \ge 0)[j + ik + \ell = n^2 + ik \text{ is a square}].$$

Intuition Perfect squares keep getting further apart. PL says you can always add some constant k to produce a word in the language.

Proof

By PL for long enough $a^{n^2} \in L_4$ there exist $x = a^j$, $y = a^k$, $z = a^\ell$ with $xyz = a^{n^2}$. Also $a^j(a^k)^i a^\ell \in L_4$. (Note $k \ge 1$.)

$$(\forall i \ge 0)[j + ik + \ell = n^2 + ik \text{ is a square}].$$

ション ふぼう メリン メリン しょうくしゃ

So n^2 , $n^2 + k$, $n^2 + 2k$, ... are all squares.

Intuition Perfect squares keep getting further apart. PL says you can always add some constant k to produce a word in the language.

Proof

By PL for long enough $a^{n^2} \in L_4$ there exist $x = a^j$, $y = a^k$, $z = a^\ell$ with $xyz = a^{n^2}$. Also $a^j(a^k)^i a^\ell \in L_4$. (Note $k \ge 1$.)

$$(\forall i \ge 0)[j + ik + \ell = n^2 + ik \text{ is a square}].$$

ション ふぼう メリン メリン しょうくしゃ

So n^2 , $n^2 + k$, $n^2 + 2k$, ... are all squares. See slide for exciting finish!
So n^2 , $n^2 + k$, $n^2 + 2k$, ... are all squares. $k \ge 1$.

So
$$n^2$$
, $n^2 + k$, $n^2 + 2k$, ... are all squares. $k \ge 1$.
 $n^2 + k \ge (n+1)^2 = n^2 + 2n + 1$.

So n^2 , $n^2 + k$, $n^2 + 2k$, ... are all squares. $k \ge 1$. $n^2 + k \ge (n+1)^2 = n^2 + 2n + 1$. So $k \ge 2n + 1$.

So n^2 , $n^2 + k$, $n^2 + 2k$, ... are all squares. $k \ge 1$. $n^2 + k \ge (n+1)^2 = n^2 + 2n + 1$. So $k \ge 2n + 1$. $n^2 + 2k \ge (n+2)^2 = n^2 + 4n + 4$.

So n^2 , $n^2 + k$, $n^2 + 2k$, ... are all squares. $k \ge 1$. $n^2 + k \ge (n+1)^2 = n^2 + 2n + 1$. So $k \ge 2n + 1$. $n^2 + 2k \ge (n+2)^2 = n^2 + 4n + 4$. So $k \ge 2n + 2$.

So n^2 , $n^2 + k$, $n^2 + 2k$, ... are all squares. $k \ge 1$. $n^2 + k \ge (n+1)^2 = n^2 + 2n + 1$. So $k \ge 2n + 1$. $n^2 + 2k \ge (n+2)^2 = n^2 + 4n + 4$. So $k \ge 2n + 2$.

÷

So
$$n^2$$
, $n^2 + k$, $n^2 + 2k$, ... are all squares. $k \ge 1$.
 $n^2 + k \ge (n+1)^2 = n^2 + 2n + 1$. So $k \ge 2n + 1$.
 $n^2 + 2k \ge (n+2)^2 = n^2 + 4n + 4$. So $k \ge 2n + 2$.
 \vdots
So
 $(\forall i \ge 1)[n^2 + ik \ge (n+i)^2 = n^2 + 2in + i^2]$.

So
$$n^2$$
, $n^2 + k$, $n^2 + 2k$, ... are all squares. $k \ge 1$.
 $n^2 + k \ge (n+1)^2 = n^2 + 2n + 1$. So $k \ge 2n + 1$.
 $n^2 + 2k \ge (n+2)^2 = n^2 + 4n + 4$. So $k \ge 2n + 2$.

So
 $(\forall i \ge 1)[n^2 + ik \ge (n+i)^2 = n^2 + 2in + i^2]$. So
 $(\forall i)[k \ge 2n + i]$.

・ロト・個ト・モト・モー シック

So
$$n^2$$
, $n^2 + k$, $n^2 + 2k$, ... are all squares. $k \ge 1$.
 $n^2 + k \ge (n+1)^2 = n^2 + 2n + 1$. So $k \ge 2n + 1$.
 $n^2 + 2k \ge (n+2)^2 = n^2 + 4n + 4$. So $k \ge 2n + 2$.

So
 $(\forall i \ge 1)[n^2 + ik \ge (n+i)^2 = n^2 + 2in + i^2]$. So
 $(\forall i)[k \ge 2n + i]$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

So k is bigger than any natural number!

So
$$n^2$$
, $n^2 + k$, $n^2 + 2k$, ... are all squares. $k \ge 1$.
 $n^2 + k \ge (n+1)^2 = n^2 + 2n + 1$. So $k \ge 2n + 1$.
 $n^2 + 2k \ge (n+2)^2 = n^2 + 4n + 4$. So $k \ge 2n + 2$.
So
 $(\forall i \ge 1)[n^2 + ik \ge (n+i)^2 = n^2 + 2in + i^2]$. So
 $(\forall i)[k \ge 2n + i]$.
So k is bigger than any natural number!

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Contradiction.

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ◆○◆◆

Intuition Primes keep getting further apart on average.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Intuition Primes keep getting further apart on average. PL says you always add some constant k to produce a word in the language.

Intuition Primes keep getting further apart on average. PL says you always add some constant k to produce a word in the language. **Too hard.** Easier proof.

ション ふゆ アメビア メロア しょうくしゃ

Intuition Primes keep getting further apart on average. PL says you always add some constant *k* to produce a word in the language. **Too hard.** Easier proof.

Think about.

ション ふゆ アメビア メロア しょうくしゃ

Intuition Primes keep getting further apart on average. PL says you always add some constant k to produce a word in the language. **Too hard.** Easier proof.

Think about.

By PL, for large p, $a^p \in L_5 \exists x = a^j$, $y = a^k$, $z = a^\ell$ such that

$$a^{j}(a^{k})^{i}a^{\ell} \in L_{5}$$

 $(\forall i \geq 0)[j + ik + \ell \text{ is prime}].$

Intuition Primes keep getting further apart on average. PL says you always add some constant *k* to produce a word in the language. **Too hard.** Easier proof.

Think about.

By PL, for large p, $a^p \in L_5 \exists x = a^j$, $y = a^k$, $z = a^\ell$ such that

$$a^j(a^k)^ia^\ell\in L_5$$
 $(orall i\geq 0)[j+ik+\ell ext{ is prime}].$

So, $p, p + k, p + 2k, \dots, p + pk$ are all prime.

・ロト・西ト・ヨト・ヨー うらぐ

Intuition Primes keep getting further apart on average. PL says you always add some constant k to produce a word in the language. **Too hard.** Easier proof.

Think about.

By PL, for large p, $a^p \in L_5 \exists x = a^j$, $y = a^k$, $z = a^\ell$ such that

$$a^j(a^k)^i a^\ell \in L_5$$
 $(orall i \geq 0)[j+ik+\ell ext{ is prime}].$

So, $p, p + k, p + 2k, \dots, p + pk$ are all prime. But p + pk = p(k + 1).

Intuition Primes keep getting further apart on average. PL says you always add some constant *k* to produce a word in the language. **Too hard.** Easier proof.

Think about.

By PL, for large p, $a^p \in L_5 \exists x = a^j$, $y = a^k$, $z = a^\ell$ such that

$$a^{j}(a^{k})^{i}a^{\ell} \in L_{5}$$

 $(\forall i \geq 0)[j + ik + \ell \text{ is prime}].$

So, p, p + k, p + 2k, ..., p + pk are all prime. But p + pk = p(k + 1). Contradiction. $L_6 = \{\#_a(w) > \#_b(w)\}$ is Not Regular

We will be brief here.

 $L_6 = \{\#_a(w) > \#_b(w)\}$ is Not Regular

We will be brief here. Take $w = b^n a^{n+1}$, long enough so the *y*-part is in the *b*'s.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

 $L_6 = \{\#_a(w) > \#_b(w)\}$ is Not Regular

We will be brief here. Take $w = b^n a^{n+1}$, long enough so the y-part is in the b's. Pump the y to get more b's than a's.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ◆○◆◆

Think about.

Think about.

Problematic Can take *w* long and pump *a*'s, but that won't get out of the language.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Think about.

Problematic Can take *w* long and pump *a*'s, but that won't get out of the language. **So what to do?** Revise PL

Think about.

Problematic Can take *w* long and pump *a*'s, but that won't get out of the language. **So what to do?** Revise PL PL had a bound on |xy|.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Think about.

Problematic Can take w long and pump a's, but that won't get out of the language.So what to do? Revise PL

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

PL had a bound on |xy|.

Can also bound |yz| by same proof.

Think about.

Problematic Can take w long and pump a's, but that won't get out of the language.

So what to do? Revise PL

PL had a bound on |xy|.

Can **also** bound |yz| by same proof.

Do that and then you can get y to be all b's, pump b's, and get out of the language.

ション ふゆ アメリア メリア しょうくしゃ

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ◆○◆◆

Think about.

Think about.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Problematic Neither pumping on the left or on the right works.

Think about.

Problematic Neither pumping on the left or on the right works.So what to do? Let's go back to the pumping lemma with a

carefully chosen string.

Think about.

Problematic Neither pumping on the left or on the right works.

So what to do? Let's go back to the pumping lemma with a carefully chosen string.

 $w=a^nb^{n-1}c^n.$

Think about.

Problematic Neither pumping on the left or on the right works.

So what to do? Let's go back to the pumping lemma with a carefully chosen string.

 $w = a^n b^{n-1} c^n.$ $x = a^j, y = a^k, z = a^{n-j-k} b^{n-1} c^n.$

Think about.

Problematic Neither pumping on the left or on the right works.

So what to do? Let's go back to the pumping lemma with a carefully chosen string.

ション ふぼう メリン メリン しょうくしゃ

 $w = a^{n}b^{n-1}c^{n}.$ $x = a^{j}, y = a^{k}, z = a^{n-j-k}b^{n-1}c^{n}.$ For all $i \ge 0, xy^{i}z \in L_{8}.$
Think about.

Problematic Neither pumping on the left or on the right works.

So what to do? Let's go back to the pumping lemma with a carefully chosen string.

$$w = a^{n}b^{n-1}c^{n}.$$

 $x = a^{j}, y = a^{k}, z = a^{n-j-k}b^{n-1}c^{n}.$
For all $i \ge 0, xy^{i}z \in L_{8}.$

$$xy^{i}z = a^{j+ik+(n-j-k)}b^{n-1}c^{n}$$

$$xy^{i}z = a^{j+ik+(n-j-k)}b^{n-1}c^{n}$$

・ロト・日本・モン・モン・モー・ション・

$$xy^{i}z = a^{j+ik+(n-j-k)}b^{n-1}c^{n}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

For all $i xy^i z = a^{j+ik+(n-j-k)}b^{n-1}c^n \in L_8$.

$$xy^{i}z = a^{j+ik+(n-j-k)}b^{n-1}c^{n}$$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

For all $i xy^i z = a^{j+ik+(n-j-k)}b^{n-1}c^n \in L_8$. Key We are used to thinking of i large.

$$xy^{i}z = a^{j+ik+(n-j-k)}b^{n-1}c^{n}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

For all $i xy^i z = a^{j+ik+(n-j-k)}b^{n-1}c^n \in L_8$. **Key** We are used to thinking of i large. But we can also take i = 0.

$$xy^{i}z = a^{j+ik+(n-j-k)}b^{n-1}c^{n}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

For all $i xy^i z = a^{j+ik+(n-j-k)}b^{n-1}c^n \in L_8$. **Key** We are used to thinking of i large. But we can also take i = 0. cut out that part of the word. We take i = 0 to get

$$xy^{i}z = a^{j+ik+(n-j-k)}b^{n-1}c^{n}$$

For all $i xy^i z = a^{j+ik+(n-j-k)}b^{n-1}c^n \in L_8$. **Key** We are used to thinking of i large. But we can also take i = 0. cut out that part of the word. We take i = 0 to get

$$xy^0z = a^{n-k}b^{n-1}c^n$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

$$xy^{i}z = a^{j+ik+(n-j-k)}b^{n-1}c^{n}$$

For all $i xy^i z = a^{j+ik+(n-j-k)}b^{n-1}c^n \in L_8$. **Key** We are used to thinking of i large. But we can also take i = 0. cut out that part of the word. We take i = 0 to get

$$xy^0z = a^{n-k}b^{n-1}c^n$$

Since $k \ge 1$, we have that $\#_a(xy^0z) < n \le n-1 = \#_b(xy^0z)$. Hence $xy^0z \notin L_8$.

ション ふぼう メリン メリン しょうくしゃ

$$xy^{i}z = a^{j+ik+(n-j-k)}b^{n-1}c^{n}$$

For all $i xy^i z = a^{j+ik+(n-j-k)}b^{n-1}c^n \in L_8$. **Key** We are used to thinking of i large. But we can also take i = 0. cut out that part of the word. We take i = 0 to get

cut out that part of the word. We take i = 0 to get

$$xy^0z = a^{n-k}b^{n-1}c^n$$

Since $k \ge 1$, we have that $\#_a(xy^0z) < n \le n-1 = \#_b(xy^0z)$. Hence $xy^0z \notin L_8$. Contradiction.

ション ふぼう メリン メリン しょうくしゃ

i = 0 Case as a Picture

▲ロト ▲御 ト ▲臣 ト ▲臣 ト 三臣 - のへで

Lower Bounds: Looking Ahead

- 1. DFA's are simple enough devices that we can actually prove languages are not regular
- 2. We will later see that Context Free Grammars are simple enough devices that we can prove Languages are not Context Free.
- Poly-bounded Turing Machines seem to be complicated devices, so proving P≠NP seems to be hard.

ション ふぼう メリン メリン しょうくしゃ

Lower Bounds: Looking Ahead

- 1. DFA's are simple enough devices that we can actually prove languages are not regular
- 2. We will later see that Context Free Grammars are simple enough devices that we can prove Languages are not Context Free.
- Poly-bounded Turing Machines seem to be complicated devices, so proving P≠NP seems to be hard. However, I expect Isaac, Adam, and Sam will work it out by the end of the semester.
- 4. Proving problems undecidable is surprisingly easy since such proofs do not depend on the details of the model of computation.