
Proving That a Language
Is Not Regular
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Two Methods of Proof

I Method 1: Run the DFA on many small words. By the
pigeon hole principle (PHP) two of the words must
finish in the same state. Then do some magic.

I Method 2 (Pumping Lemma (PL)): Run the DFA on
one long word. By the PHP the word must visit the same
state twice. Then do some magic.
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To prove lower bounds for number of states for DFA’s.
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L1 = {anbn : n ≥ 0} is Not Regular
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I DFA’s only have finite memory.

I A DFA has to “remember” the length of an arbitrarily
long sequence of a’s when processing the b’s.

Intuition is not proof.
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L1 = {anbn : n ≥ 0} is Not Regular

Proof Assume L1 is regular via DFA M with m states.
Run M on a0, a1, a2, . . . , am.
By PHP 2 inputs, ai and aj (i 6= j), end in same state p.
Run M on both aibi and ajbi

They will end up in the same state q.
Hence M either

1. Accepts both aibi and ajbi

2. Rejects both aibi and ajbi

Either way, that is a contradiction.

Intuition A DFA with m states can only “remember” m
pieces of information.

This idea is formalized in the Myhill-Nerode theorem.

We do not care.
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L1 = {anbn : n ≥ 0} is Not Regular: Alt Proof

Proof Assume L1 is regular via DFA M with m states.
Run M on ambm.
States encountered processing am:

q0, q1, q2, . . . , qm−1

By PHP some state is encountered twice.
So there is a loop at that state where k ≥ 1 a’s are processed.

q0 q1 · · · qi · · · · · · qm−1
a a a

· · ·

a b b

an+kbn is accepted by following the loop again. Contradiction.



L1 = {anbn : n ≥ 0} is Not Regular: Alt Proof

Proof

Assume L1 is regular via DFA M with m states.
Run M on ambm.
States encountered processing am:

q0, q1, q2, . . . , qm−1

By PHP some state is encountered twice.
So there is a loop at that state where k ≥ 1 a’s are processed.

q0 q1 · · · qi · · · · · · qm−1
a a a

· · ·

a b b

an+kbn is accepted by following the loop again. Contradiction.



L1 = {anbn : n ≥ 0} is Not Regular: Alt Proof

Proof Assume L1 is regular via DFA M with m states.

Run M on ambm.
States encountered processing am:

q0, q1, q2, . . . , qm−1

By PHP some state is encountered twice.
So there is a loop at that state where k ≥ 1 a’s are processed.

q0 q1 · · · qi · · · · · · qm−1
a a a

· · ·

a b b

an+kbn is accepted by following the loop again. Contradiction.



L1 = {anbn : n ≥ 0} is Not Regular: Alt Proof

Proof Assume L1 is regular via DFA M with m states.
Run M on ambm.

States encountered processing am:
q0, q1, q2, . . . , qm−1

By PHP some state is encountered twice.
So there is a loop at that state where k ≥ 1 a’s are processed.

q0 q1 · · · qi · · · · · · qm−1
a a a

· · ·

a b b

an+kbn is accepted by following the loop again. Contradiction.



L1 = {anbn : n ≥ 0} is Not Regular: Alt Proof

Proof Assume L1 is regular via DFA M with m states.
Run M on ambm.
States encountered processing am:

q0, q1, q2, . . . , qm−1

By PHP some state is encountered twice.
So there is a loop at that state where k ≥ 1 a’s are processed.

q0 q1 · · · qi · · · · · · qm−1
a a a

· · ·

a b b

an+kbn is accepted by following the loop again. Contradiction.



L1 = {anbn : n ≥ 0} is Not Regular: Alt Proof

Proof Assume L1 is regular via DFA M with m states.
Run M on ambm.
States encountered processing am:

q0, q1, q2, . . . , qm−1

By PHP some state is encountered twice.

So there is a loop at that state where k ≥ 1 a’s are processed.

q0 q1 · · · qi · · · · · · qm−1
a a a

· · ·

a b b

an+kbn is accepted by following the loop again. Contradiction.



L1 = {anbn : n ≥ 0} is Not Regular: Alt Proof

Proof Assume L1 is regular via DFA M with m states.
Run M on ambm.
States encountered processing am:

q0, q1, q2, . . . , qm−1

By PHP some state is encountered twice.
So there is a loop at that state where k ≥ 1 a’s are processed.

q0 q1 · · · qi · · · · · · qm−1
a a a

· · ·

a b b

an+kbn is accepted by following the loop again. Contradiction.



L1 = {anbn : n ≥ 0} is Not Regular: Alt Proof

Proof Assume L1 is regular via DFA M with m states.
Run M on ambm.
States encountered processing am:

q0, q1, q2, . . . , qm−1

By PHP some state is encountered twice.
So there is a loop at that state where k ≥ 1 a’s are processed.

q0 q1 · · · qi · · · · · · qm−1
a a a

· · ·

a b b

an+kbn is accepted by following the loop again. Contradiction.



L1 = {anbn : n ≥ 0} is Not Regular: Alt Proof

Proof Assume L1 is regular via DFA M with m states.
Run M on ambm.
States encountered processing am:

q0, q1, q2, . . . , qm−1

By PHP some state is encountered twice.
So there is a loop at that state where k ≥ 1 a’s are processed.

q0 q1 · · · qi · · · · · · qm−1
a a a

· · ·

a b b

an+kbn is accepted by following the loop again. Contradiction.



L2 = {w : #a(w) = #b(w)} is not regular.

Exactly the same
Proof
Assume L1 is regular via DFA M with m states.
Run M on ambm.
States encountered processing am:

s0, s1, s2, . . . , sm
By PHP same state encountered twice.
There is a loop at that state where k ≥ 1 a’s are processed.
an+kbn is also accepted by following the loop again.
Contradiction.

This idea can be formalized into the pumping lemma ...

... and we will do so.
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General Technique

Pumping Lemma (PL) If L is regular then there exist n0 and
n1 such that the following holds:
For all w ∈ L, |w | ≥ n0 there exist x , y , z such that:

1. w = xyz and y 6= e.

2. |xy | ≤ n1.

3. For all i ≥ 0, xy iz ∈ L.

Proof by picture

q0 · · · qi · · · qm−1
σ

x y z

σ σ

· · ·
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How We Use the PL

We restate it in the way that we use it.

PL If L is reg then for large enough strings w in L there
exist x , y , z such that:

1. w = xyz and y 6= e.

2. |xy | is short.

3. for all i , xy iz ∈ L.

We then find some i such that xy iz /∈ L for the contradiction.
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REDO: L1 = {anbn : n ∈ N} is Not Regular

Assume L1 is regular.
By PL, for long anbn ∈ L1, ∃x , y , z :

1. y 6= e.

2. |xy | is short.

3. For all i ≥ 0, xy iz ∈ L1.

Take w long enough so that the xy part only has a’s.
x = aj , y = ak , z = an−j−kbn. Note k ≥ 1.
By the PL, all of the words

aj
(
ak
)i
an−j−kbn = an+k(i−1)bn

are in L1.
Take i = 2 to get

an+kbn ∈ L1

Contradiction since k ≥ 1.
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L2 = {w : #a(w) = #b(w)} is Not Regular

Proof: Same Proof as L1 not Reg: Still look at ambm.
Key PL says for ALL long enough w ∈ L.



L3 = {w : #a(w) 6= #b(w)} is Not Regular

Think about.
PL Does Not Help. When you increase the number of y ’s
there is no way to control it so carefully to make the number
of a’s EQUAL the number of b’s.

So what do to?

If L3 is regular then L2 = L3 is regular. But we know that L2 is
not regular. DONE!
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L4 = {an2
: n ∈ N} is Not Regular

Intuition Perfect squares keep getting further apart.
PL says you can always add some constant k to produce a
word in the language.

Proof
By PL for long enough an

2 ∈ L4 there exist x = aj , y = ak ,
z = a` with xyz = an

2
. Also aj(ak)ia` ∈ L4. (Note k ≥ 1.)

(∀i ≥ 0)[j + ik + ` = n2 + ik is a square].

So n2, n2 + k , n2 + 2k , . . . are all squares.
See slide for exciting finish!
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L4 = {an2
: n ∈ N} is Not Regular (cont)

So n2, n2 + k , n2 + 2k , . . . are all squares. k ≥ 1.

n2 + k ≥ (n + 1)2 = n2 + 2n + 1. So k ≥ 2n + 1.

n2 + 2k ≥ (n + 2)2 = n2 + 4n + 4. So k ≥ 2n + 2.

...

So
(∀i ≥ 1)[n2 + ik ≥ (n + i)2 = n2 + 2in + i2]. So
(∀i)[k ≥ 2n + i ].
So k is bigger than any natural number!
Contradiction.
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L5 = {ap : p is prime} is Not Regular

Intuition Primes keep getting further apart on average.
PL says you always add some constant k to produce a word in
the language. Too hard. Easier proof.

Think about.
By PL, for large p, ap ∈ L5 ∃ x = aj , y = ak , z = a` such that

aj(ak)ia` ∈ L5

(∀i ≥ 0)[j + ik + ` is prime].

So, p, p + k , p + 2k , . . . , p + pk are all prime.
But p + pk = p(k + 1). Contradiction.
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L6 = {#a(w) > #b(w)} is Not Regular

We will be brief here.

Take w = bnan+1, long enough so the y -part is in the b’s.
Pump the y to get more b’s than a’s.
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L7 = {anbm : n > m} is Not Regular

Think about.
Problematic Can take w long and pump a’s, but that won’t
get out of the language.
So what to do? Revise PL

PL had a bound on |xy |.
Can also bound |yz | by same proof.

Do that and then you can get y to be all b’s, pump b’s, and
get out of the language.
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Think about.
Problematic Neither pumping on the left or on the right
works.
So what to do? Let’s go back to the pumping lemma with a
carefully chosen string.

w = anbn−1cn.

x = aj , y = ak , z = an−j−kbn−1cn.

For all i ≥ 0, xy iz ∈ L8.

xy iz = aj+ik+(n−j−k)bn−1cn
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L8 = {an1bmcn2 : n1,n2 > m} is Not Regular (Cont)

xy iz = aj+ik+(n−j−k)bn−1cn

For all i xy iz = aj+ik+(n−j−k)bn−1cn ∈ L8.

Key We are used to thinking of i large.
But we can also take i = 0.
cut out that part of the word. We take i = 0 to get

xy 0z = an−kbn−1cn

Since k ≥ 1, we have that #a(xy 0z) < n ≤ n− 1 = #b(xy 0z).
Hence xy 0z /∈ L8. Contradiction.



L8 = {an1bmcn2 : n1,n2 > m} is Not Regular (Cont)

xy iz = aj+ik+(n−j−k)bn−1cn

For all i xy iz = aj+ik+(n−j−k)bn−1cn ∈ L8.

Key We are used to thinking of i large.
But we can also take i = 0.
cut out that part of the word. We take i = 0 to get

xy 0z = an−kbn−1cn

Since k ≥ 1, we have that #a(xy 0z) < n ≤ n− 1 = #b(xy 0z).
Hence xy 0z /∈ L8. Contradiction.



L8 = {an1bmcn2 : n1,n2 > m} is Not Regular (Cont)

xy iz = aj+ik+(n−j−k)bn−1cn

For all i xy iz = aj+ik+(n−j−k)bn−1cn ∈ L8.

Key We are used to thinking of i large.

But we can also take i = 0.
cut out that part of the word. We take i = 0 to get

xy 0z = an−kbn−1cn

Since k ≥ 1, we have that #a(xy 0z) < n ≤ n− 1 = #b(xy 0z).
Hence xy 0z /∈ L8. Contradiction.



L8 = {an1bmcn2 : n1,n2 > m} is Not Regular (Cont)

xy iz = aj+ik+(n−j−k)bn−1cn

For all i xy iz = aj+ik+(n−j−k)bn−1cn ∈ L8.

Key We are used to thinking of i large.
But we can also take i = 0.

cut out that part of the word. We take i = 0 to get

xy 0z = an−kbn−1cn

Since k ≥ 1, we have that #a(xy 0z) < n ≤ n− 1 = #b(xy 0z).
Hence xy 0z /∈ L8. Contradiction.



L8 = {an1bmcn2 : n1,n2 > m} is Not Regular (Cont)

xy iz = aj+ik+(n−j−k)bn−1cn

For all i xy iz = aj+ik+(n−j−k)bn−1cn ∈ L8.

Key We are used to thinking of i large.
But we can also take i = 0.
cut out that part of the word. We take i = 0 to get

xy 0z = an−kbn−1cn

Since k ≥ 1, we have that #a(xy 0z) < n ≤ n− 1 = #b(xy 0z).
Hence xy 0z /∈ L8. Contradiction.



L8 = {an1bmcn2 : n1,n2 > m} is Not Regular (Cont)

xy iz = aj+ik+(n−j−k)bn−1cn

For all i xy iz = aj+ik+(n−j−k)bn−1cn ∈ L8.

Key We are used to thinking of i large.
But we can also take i = 0.
cut out that part of the word. We take i = 0 to get

xy 0z = an−kbn−1cn

Since k ≥ 1, we have that #a(xy 0z) < n ≤ n− 1 = #b(xy 0z).
Hence xy 0z /∈ L8. Contradiction.



L8 = {an1bmcn2 : n1,n2 > m} is Not Regular (Cont)

xy iz = aj+ik+(n−j−k)bn−1cn

For all i xy iz = aj+ik+(n−j−k)bn−1cn ∈ L8.

Key We are used to thinking of i large.
But we can also take i = 0.
cut out that part of the word. We take i = 0 to get

xy 0z = an−kbn−1cn

Since k ≥ 1, we have that #a(xy 0z) < n ≤ n− 1 = #b(xy 0z).
Hence xy 0z /∈ L8.

Contradiction.



L8 = {an1bmcn2 : n1,n2 > m} is Not Regular (Cont)

xy iz = aj+ik+(n−j−k)bn−1cn

For all i xy iz = aj+ik+(n−j−k)bn−1cn ∈ L8.

Key We are used to thinking of i large.
But we can also take i = 0.
cut out that part of the word. We take i = 0 to get

xy 0z = an−kbn−1cn

Since k ≥ 1, we have that #a(xy 0z) < n ≤ n− 1 = #b(xy 0z).
Hence xy 0z /∈ L8. Contradiction.



i = 0 Case as a Picture

q0 q1 · · · qi · · · qm−1
σ σ σ

· · ·

σ σ

q0 q1 · · · qi · · · qm−1
σ σ σ σ σ



Lower Bounds: Looking Ahead

1. DFA’s are simple enough devices that we can actually
prove languages are not regular

2. We will later see that Context Free Grammars are simple
enough devices that we can prove Languages are not
Context Free.

3. Poly-bounded Turing Machines seem to be complicated
devices, so proving P6=NP seems to be hard.

However, I
expect Isaac, Adam, and Sam will work it out by the end
of the semester.

4. Proving problems undecidable is surprisingly easy since
such proofs do not depend on the details of the model of
computation.
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