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For all of the classes of problems studied this semester we ask the
following two questions

1. Is the ()-problems solvable?
(Given M determine if L(M) = 0.)

2. Is the X*-problems solvable?
(Given M determine if L(M) = X*.)

We will also look at the complexity of these problems.
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Given a DFA M, can we tell if L(M) = (?
Yes Det. if there is a path from the start state to some final state.
Complexity This is reachability prob. Linear in numb. of states.

Given a NFA M, can we tell if L(M) = (7
Yes Same exact algorithm, so still linear time.

Given a regex a, can we tell if L(«a) =07
Yes Convert to an NFA M and test L(M) = (). Complexity Linear.

Caveat Might be easier.
The only way for L(a) =0 is if § is in it.
Alg Scan for () and simplify expression. See if have ) in the end.
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Given a DFA M, can we tell if L(M) = £*7?
Yes Complement and Solve () problem.
Complexity Linear.

Given a NFA M, can we tell if L(M) = X£*7?

Yes Convert to DFA and Solve. 27 time. Better?

Vote Known-Poly, Known-NPC, Known-harder, Unknown!
Complexity PSPACE-complete. So likely harder than NP.

Given a regex «, can we tell if L(a) = X*?
Yes Convert to an NFA M and test L(M) = (). PSPACE-complete.
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CFL: @

Given a CFG G in Chomsky Normal Form, can we tell if L(G)

We know L(G) = XL* is undecidable.
So is L(G) = () decidable?
Vote

1.

AR

6.

Known: P

Known: NPC

Known: Decidable but likely harder than NP
Known: Decidable and known to be harder than NP
Known: Undecidable

Unknown to Science!

Answer on Next Page.

0?
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Known: P

1. Input G a CFG in Chomsky Normal Form.

2. Our algorithm will mark every nonterm that generates some
string. At the end we see if S is marked.

3. For all rules of the form A—o, mark A.
4. For all rules of the form A—BC if B, C are marked, then
mark A.

4.1 If S is marked then output YES and HALT.
4.2 1f no new nonterms are marked then output NO and HALT.
4.3 If a new nonterm is marked but its not S then repeat Step 4.

Numb of iterations < numb of nonterms, so alg is poly time.
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CFL: X~

As shown in a prior lecture, the problem of given a CFL does it
equal £* is undecidable.

The key step was an algorithm for the following:

Given (e, x) output a CFL for ACCe .
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We need a way to represent languages in P.

We take TM along with a poly p.

L(M, p) = {x: M(x) |=1 within time p(|x|) }

Is the following decidable: Given M, p, is L(M, p) = (?
No.

We give two proofs.
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Proof 1: Use CFG-0

1. Input CFG G. (We want to know if L(G) =X*.)

2. Create Poly time TM M for L(G).
(The Dynamic Programming Algorithm from CYK, but at the
end reverse the answers.)
Let p be its run time.

3. Comment
L(G) = £*=L(G) = 0—L(M, p)
L(G) # X —L(G) 75 —L(M, p)
4. Using ALG find if L(M, p) =
If YES then output YES.
If NO then output NO.

Interesting since we are NOT using HALT.

Contrast:

Common to not use SAT to show a problem NPC.
Uncommon to not use HALT to show a problem UNDEC.

\H\II
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Proof 2: Use HALT

Assume, BWOC, that L(M, p) = () problem is DEC.
We also take ¥ = {1}.
We show that HALT is DEC.

1. Input e,x. (We want to know if M¢(x) {.)
2. Create a machine M and poly p as follows:

2.1 Input 1° (Thisis 1---1.)
2.2 Run M,(x) for s steps.

(For technical reasons this take O(slogs) < s? time.)
2.3 If M. s(x) { then output YES. If not then output NO.

3. Test if L(M, n?) = 0.

3.1 If L(M, n?) = () then output NO (Me(x) 1).
3.2 If L(M, n?) # 0 then output YES (M(x) |).
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Is the following decidable: Given M, p, is L(M, p) = ¥*?
No.

Assume, BWOC, that L(M, p) = X* is DEC.

We show that HALT is DEC.

1. Input e,x. (We want to know if M¢(x) {.)
2. Create a machine M and poly p as follows:
2.1 Input 1° (Thisis 1---1.)
2.2 Run M,(x) for s steps.
(For technical reasons this take slogs < s time.)
2.3 If Mes(x) | then output NO. If not then output YES.

3. Test if L(M,n?) = x*.
3.1 If L(M, n?) = £* then output NO (M(x) 7).
3.2 If L(M, n?) # £* then output YES (M.(x) ).
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For NP, DEC, ¥; the L(M) = ¥* is undecidable.

Proofs are similar to that for P.
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The X" Problem

Given M does there exist n such that ¥ C L(M)?
1. For DFA this problem is NP-complete.

Interesting Very few problems about DFAs are NP-complete.

2. For CFG this problem is PSPACE-hard but Open as to
whether or not its in PSPACE .

Interesting Very few problems about CFG'’s are open.
For P, NP, DEC, ¥, Undecidable.
Boring Most problems about P, NP, DEC, ¥; are undecidable.



