
The ∅-Problem and the
Σ∗-Problem

May 2, 2024

Goals

For all of the classes of problems studied this semester we ask the
following two questions

1. Is the ∅-problems solvable?
(Given M determine if L(M) = ∅.)

2. Is the Σ∗-problems solvable?
(Given M determine if L(M) = Σ∗.)

We will also look at the complexity of these problems.

Goals

For all of the classes of problems studied this semester we ask the
following two questions

1. Is the ∅-problems solvable?
(Given M determine if L(M) = ∅.)

2. Is the Σ∗-problems solvable?
(Given M determine if L(M) = Σ∗.)

We will also look at the complexity of these problems.

Goals

For all of the classes of problems studied this semester we ask the
following two questions

1. Is the ∅-problems solvable?
(Given M determine if L(M) = ∅.)

2. Is the Σ∗-problems solvable?
(Given M determine if L(M) = Σ∗.)

We will also look at the complexity of these problems.

Goals

For all of the classes of problems studied this semester we ask the
following two questions

1. Is the ∅-problems solvable?
(Given M determine if L(M) = ∅.)

2. Is the Σ∗-problems solvable?
(Given M determine if L(M) = Σ∗.)

We will also look at the complexity of these problems.

Regular Language: ∅

Given a DFA M, can we tell if L(M) = ∅?

Yes Det. if there is a path from the start state to some final state.
Complexity This is reachability prob. Linear in numb. of states.

Given a NFA M, can we tell if L(M) = ∅?
Yes Same exact algorithm, so still linear time.

Given a regex α, can we tell if L(α) = ∅?
Yes Convert to an NFA M and test L(M) = ∅. Complexity Linear.

Caveat Might be easier.
The only way for L(α) = ∅ is if ∅ is in it.
Alg Scan for ∅ and simplify expression. See if have ∅ in the end.

Regular Language: ∅

Given a DFA M, can we tell if L(M) = ∅?
Yes Det. if there is a path from the start state to some final state.

Complexity This is reachability prob. Linear in numb. of states.

Given a NFA M, can we tell if L(M) = ∅?
Yes Same exact algorithm, so still linear time.

Given a regex α, can we tell if L(α) = ∅?
Yes Convert to an NFA M and test L(M) = ∅. Complexity Linear.

Caveat Might be easier.
The only way for L(α) = ∅ is if ∅ is in it.
Alg Scan for ∅ and simplify expression. See if have ∅ in the end.

Regular Language: ∅

Given a DFA M, can we tell if L(M) = ∅?
Yes Det. if there is a path from the start state to some final state.
Complexity This is reachability prob. Linear in numb. of states.

Given a NFA M, can we tell if L(M) = ∅?
Yes Same exact algorithm, so still linear time.

Given a regex α, can we tell if L(α) = ∅?
Yes Convert to an NFA M and test L(M) = ∅. Complexity Linear.

Caveat Might be easier.
The only way for L(α) = ∅ is if ∅ is in it.
Alg Scan for ∅ and simplify expression. See if have ∅ in the end.

Regular Language: ∅

Given a DFA M, can we tell if L(M) = ∅?
Yes Det. if there is a path from the start state to some final state.
Complexity This is reachability prob. Linear in numb. of states.

Given a NFA M, can we tell if L(M) = ∅?

Yes Same exact algorithm, so still linear time.

Given a regex α, can we tell if L(α) = ∅?
Yes Convert to an NFA M and test L(M) = ∅. Complexity Linear.

Caveat Might be easier.
The only way for L(α) = ∅ is if ∅ is in it.
Alg Scan for ∅ and simplify expression. See if have ∅ in the end.

Regular Language: ∅

Given a DFA M, can we tell if L(M) = ∅?
Yes Det. if there is a path from the start state to some final state.
Complexity This is reachability prob. Linear in numb. of states.

Given a NFA M, can we tell if L(M) = ∅?
Yes Same exact algorithm, so still linear time.

Given a regex α, can we tell if L(α) = ∅?
Yes Convert to an NFA M and test L(M) = ∅. Complexity Linear.

Caveat Might be easier.
The only way for L(α) = ∅ is if ∅ is in it.
Alg Scan for ∅ and simplify expression. See if have ∅ in the end.

Regular Language: ∅

Given a DFA M, can we tell if L(M) = ∅?
Yes Det. if there is a path from the start state to some final state.
Complexity This is reachability prob. Linear in numb. of states.

Given a NFA M, can we tell if L(M) = ∅?
Yes Same exact algorithm, so still linear time.

Given a regex α, can we tell if L(α) = ∅?

Yes Convert to an NFA M and test L(M) = ∅. Complexity Linear.

Caveat Might be easier.
The only way for L(α) = ∅ is if ∅ is in it.
Alg Scan for ∅ and simplify expression. See if have ∅ in the end.

Regular Language: ∅

Given a DFA M, can we tell if L(M) = ∅?
Yes Det. if there is a path from the start state to some final state.
Complexity This is reachability prob. Linear in numb. of states.

Given a NFA M, can we tell if L(M) = ∅?
Yes Same exact algorithm, so still linear time.

Given a regex α, can we tell if L(α) = ∅?
Yes Convert to an NFA M and test L(M) = ∅. Complexity Linear.

Caveat Might be easier.
The only way for L(α) = ∅ is if ∅ is in it.
Alg Scan for ∅ and simplify expression. See if have ∅ in the end.

Regular Language: ∅

Given a DFA M, can we tell if L(M) = ∅?
Yes Det. if there is a path from the start state to some final state.
Complexity This is reachability prob. Linear in numb. of states.

Given a NFA M, can we tell if L(M) = ∅?
Yes Same exact algorithm, so still linear time.

Given a regex α, can we tell if L(α) = ∅?
Yes Convert to an NFA M and test L(M) = ∅. Complexity Linear.

Caveat Might be easier.

The only way for L(α) = ∅ is if ∅ is in it.
Alg Scan for ∅ and simplify expression. See if have ∅ in the end.

Regular Language: ∅

Given a DFA M, can we tell if L(M) = ∅?
Yes Det. if there is a path from the start state to some final state.
Complexity This is reachability prob. Linear in numb. of states.

Given a NFA M, can we tell if L(M) = ∅?
Yes Same exact algorithm, so still linear time.

Given a regex α, can we tell if L(α) = ∅?
Yes Convert to an NFA M and test L(M) = ∅. Complexity Linear.

Caveat Might be easier.
The only way for L(α) = ∅ is if ∅ is in it.

Alg Scan for ∅ and simplify expression. See if have ∅ in the end.

Regular Language: ∅

Given a DFA M, can we tell if L(M) = ∅?
Yes Det. if there is a path from the start state to some final state.
Complexity This is reachability prob. Linear in numb. of states.

Given a NFA M, can we tell if L(M) = ∅?
Yes Same exact algorithm, so still linear time.

Given a regex α, can we tell if L(α) = ∅?
Yes Convert to an NFA M and test L(M) = ∅. Complexity Linear.

Caveat Might be easier.
The only way for L(α) = ∅ is if ∅ is in it.
Alg Scan for ∅ and simplify expression. See if have ∅ in the end.

Regular Language: Σ∗

Given a DFA M, can we tell if L(M) = Σ∗?

Yes Complement and Solve ∅ problem.
Complexity Linear.

Given a NFA M, can we tell if L(M) = Σ∗?
Yes Convert to DFA and Solve. 2n time. Better?
Vote Known-Poly, Known-NPC, Known-harder, Unknown!
Complexity PSPACE-complete. So likely harder than NP.

Given a regex α, can we tell if L(α) = Σ∗?
Yes Convert to an NFA M and test L(M) = ∅. PSPACE-complete.

Regular Language: Σ∗

Given a DFA M, can we tell if L(M) = Σ∗?
Yes Complement and Solve ∅ problem.

Complexity Linear.

Given a NFA M, can we tell if L(M) = Σ∗?
Yes Convert to DFA and Solve. 2n time. Better?
Vote Known-Poly, Known-NPC, Known-harder, Unknown!
Complexity PSPACE-complete. So likely harder than NP.

Given a regex α, can we tell if L(α) = Σ∗?
Yes Convert to an NFA M and test L(M) = ∅. PSPACE-complete.

Regular Language: Σ∗

Given a DFA M, can we tell if L(M) = Σ∗?
Yes Complement and Solve ∅ problem.
Complexity Linear.

Given a NFA M, can we tell if L(M) = Σ∗?
Yes Convert to DFA and Solve. 2n time. Better?
Vote Known-Poly, Known-NPC, Known-harder, Unknown!
Complexity PSPACE-complete. So likely harder than NP.

Given a regex α, can we tell if L(α) = Σ∗?
Yes Convert to an NFA M and test L(M) = ∅. PSPACE-complete.

Regular Language: Σ∗

Given a DFA M, can we tell if L(M) = Σ∗?
Yes Complement and Solve ∅ problem.
Complexity Linear.

Given a NFA M, can we tell if L(M) = Σ∗?

Yes Convert to DFA and Solve. 2n time. Better?
Vote Known-Poly, Known-NPC, Known-harder, Unknown!
Complexity PSPACE-complete. So likely harder than NP.

Given a regex α, can we tell if L(α) = Σ∗?
Yes Convert to an NFA M and test L(M) = ∅. PSPACE-complete.

Regular Language: Σ∗

Given a DFA M, can we tell if L(M) = Σ∗?
Yes Complement and Solve ∅ problem.
Complexity Linear.

Given a NFA M, can we tell if L(M) = Σ∗?
Yes Convert to DFA and Solve. 2n time. Better?

Vote Known-Poly, Known-NPC, Known-harder, Unknown!
Complexity PSPACE-complete. So likely harder than NP.

Given a regex α, can we tell if L(α) = Σ∗?
Yes Convert to an NFA M and test L(M) = ∅. PSPACE-complete.

Regular Language: Σ∗

Given a DFA M, can we tell if L(M) = Σ∗?
Yes Complement and Solve ∅ problem.
Complexity Linear.

Given a NFA M, can we tell if L(M) = Σ∗?
Yes Convert to DFA and Solve. 2n time. Better?
Vote Known-Poly, Known-NPC, Known-harder, Unknown!

Complexity PSPACE-complete. So likely harder than NP.

Given a regex α, can we tell if L(α) = Σ∗?
Yes Convert to an NFA M and test L(M) = ∅. PSPACE-complete.

Regular Language: Σ∗

Given a DFA M, can we tell if L(M) = Σ∗?
Yes Complement and Solve ∅ problem.
Complexity Linear.

Given a NFA M, can we tell if L(M) = Σ∗?
Yes Convert to DFA and Solve. 2n time. Better?
Vote Known-Poly, Known-NPC, Known-harder, Unknown!
Complexity PSPACE-complete. So likely harder than NP.

Given a regex α, can we tell if L(α) = Σ∗?
Yes Convert to an NFA M and test L(M) = ∅. PSPACE-complete.

Regular Language: Σ∗

Given a DFA M, can we tell if L(M) = Σ∗?
Yes Complement and Solve ∅ problem.
Complexity Linear.

Given a NFA M, can we tell if L(M) = Σ∗?
Yes Convert to DFA and Solve. 2n time. Better?
Vote Known-Poly, Known-NPC, Known-harder, Unknown!
Complexity PSPACE-complete. So likely harder than NP.

Given a regex α, can we tell if L(α) = Σ∗?

Yes Convert to an NFA M and test L(M) = ∅. PSPACE-complete.

Regular Language: Σ∗

Given a DFA M, can we tell if L(M) = Σ∗?
Yes Complement and Solve ∅ problem.
Complexity Linear.

Given a NFA M, can we tell if L(M) = Σ∗?
Yes Convert to DFA and Solve. 2n time. Better?
Vote Known-Poly, Known-NPC, Known-harder, Unknown!
Complexity PSPACE-complete. So likely harder than NP.

Given a regex α, can we tell if L(α) = Σ∗?
Yes Convert to an NFA M and test L(M) = ∅. PSPACE-complete.

CFL: ∅

Given a CFG G in Chomsky Normal Form, can we tell if L(G) = ∅?

We know L(G) = Σ∗ is undecidable.

So is L(G) = ∅ decidable?

Vote

1. Known: P

2. Known: NPC

3. Known: Decidable but likely harder than NP

4. Known: Decidable and known to be harder than NP

5. Known: Undecidable

6. Unknown to Science!

Answer on Next Page.

CFL: ∅

Given a CFG G in Chomsky Normal Form, can we tell if L(G) = ∅?
We know L(G) = Σ∗ is undecidable.

So is L(G) = ∅ decidable?

Vote

1. Known: P

2. Known: NPC

3. Known: Decidable but likely harder than NP

4. Known: Decidable and known to be harder than NP

5. Known: Undecidable

6. Unknown to Science!

Answer on Next Page.

CFL: ∅

Given a CFG G in Chomsky Normal Form, can we tell if L(G) = ∅?
We know L(G) = Σ∗ is undecidable.

So is L(G) = ∅ decidable?

Vote

1. Known: P

2. Known: NPC

3. Known: Decidable but likely harder than NP

4. Known: Decidable and known to be harder than NP

5. Known: Undecidable

6. Unknown to Science!

Answer on Next Page.

CFL: ∅

Given a CFG G in Chomsky Normal Form, can we tell if L(G) = ∅?
We know L(G) = Σ∗ is undecidable.

So is L(G) = ∅ decidable?

Vote

1. Known: P

2. Known: NPC

3. Known: Decidable but likely harder than NP

4. Known: Decidable and known to be harder than NP

5. Known: Undecidable

6. Unknown to Science!

Answer on Next Page.

CFL: ∅

Given a CFG G in Chomsky Normal Form, can we tell if L(G) = ∅?
We know L(G) = Σ∗ is undecidable.

So is L(G) = ∅ decidable?

Vote

1. Known: P

2. Known: NPC

3. Known: Decidable but likely harder than NP

4. Known: Decidable and known to be harder than NP

5. Known: Undecidable

6. Unknown to Science!

Answer on Next Page.

CFL: ∅

Given a CFG G in Chomsky Normal Form, can we tell if L(G) = ∅?
We know L(G) = Σ∗ is undecidable.

So is L(G) = ∅ decidable?

Vote

1. Known: P

2. Known: NPC

3. Known: Decidable but likely harder than NP

4. Known: Decidable and known to be harder than NP

5. Known: Undecidable

6. Unknown to Science!

Answer on Next Page.

CFL: ∅

Given a CFG G in Chomsky Normal Form, can we tell if L(G) = ∅?
We know L(G) = Σ∗ is undecidable.

So is L(G) = ∅ decidable?

Vote

1. Known: P

2. Known: NPC

3. Known: Decidable but likely harder than NP

4. Known: Decidable and known to be harder than NP

5. Known: Undecidable

6. Unknown to Science!

Answer on Next Page.

CFL: ∅

Given a CFG G in Chomsky Normal Form, can we tell if L(G) = ∅?
We know L(G) = Σ∗ is undecidable.

So is L(G) = ∅ decidable?

Vote

1. Known: P

2. Known: NPC

3. Known: Decidable but likely harder than NP

4. Known: Decidable and known to be harder than NP

5. Known: Undecidable

6. Unknown to Science!

Answer on Next Page.

CFL: ∅

Given a CFG G in Chomsky Normal Form, can we tell if L(G) = ∅?
We know L(G) = Σ∗ is undecidable.

So is L(G) = ∅ decidable?

Vote

1. Known: P

2. Known: NPC

3. Known: Decidable but likely harder than NP

4. Known: Decidable and known to be harder than NP

5. Known: Undecidable

6. Unknown to Science!

Answer on Next Page.

CFL: ∅

Given a CFG G in Chomsky Normal Form, can we tell if L(G) = ∅?
We know L(G) = Σ∗ is undecidable.

So is L(G) = ∅ decidable?

Vote

1. Known: P

2. Known: NPC

3. Known: Decidable but likely harder than NP

4. Known: Decidable and known to be harder than NP

5. Known: Undecidable

6. Unknown to Science!

Answer on Next Page.

CFL: ∅

Given a CFG G in Chomsky Normal Form, can we tell if L(G) = ∅?
We know L(G) = Σ∗ is undecidable.

So is L(G) = ∅ decidable?

Vote

1. Known: P

2. Known: NPC

3. Known: Decidable but likely harder than NP

4. Known: Decidable and known to be harder than NP

5. Known: Undecidable

6. Unknown to Science!

Answer on Next Page.

Known: P

1. Input G a CFG in Chomsky Normal Form.

2. Our algorithm will mark every nonterm that generates some
string. At the end we see if S is marked.

3. For all rules of the form A→σ, mark A.

4. For all rules of the form A→BC if B,C are marked, then
mark A.

4.1 If S is marked then output YES and HALT.
4.2 If no new nonterms are marked then output NO and HALT.
4.3 If a new nonterm is marked but its not S then repeat Step 4.

Numb of iterations ≤ numb of nonterms, so alg is poly time.

Known: P

1. Input G a CFG in Chomsky Normal Form.

2. Our algorithm will mark every nonterm that generates some
string. At the end we see if S is marked.

3. For all rules of the form A→σ, mark A.

4. For all rules of the form A→BC if B,C are marked, then
mark A.

4.1 If S is marked then output YES and HALT.
4.2 If no new nonterms are marked then output NO and HALT.
4.3 If a new nonterm is marked but its not S then repeat Step 4.

Numb of iterations ≤ numb of nonterms, so alg is poly time.

Known: P

1. Input G a CFG in Chomsky Normal Form.

2. Our algorithm will mark every nonterm that generates some
string. At the end we see if S is marked.

3. For all rules of the form A→σ, mark A.

4. For all rules of the form A→BC if B,C are marked, then
mark A.

4.1 If S is marked then output YES and HALT.
4.2 If no new nonterms are marked then output NO and HALT.
4.3 If a new nonterm is marked but its not S then repeat Step 4.

Numb of iterations ≤ numb of nonterms, so alg is poly time.

Known: P

1. Input G a CFG in Chomsky Normal Form.

2. Our algorithm will mark every nonterm that generates some
string. At the end we see if S is marked.

3. For all rules of the form A→σ, mark A.

4. For all rules of the form A→BC if B,C are marked, then
mark A.

4.1 If S is marked then output YES and HALT.
4.2 If no new nonterms are marked then output NO and HALT.
4.3 If a new nonterm is marked but its not S then repeat Step 4.

Numb of iterations ≤ numb of nonterms, so alg is poly time.

Known: P

1. Input G a CFG in Chomsky Normal Form.

2. Our algorithm will mark every nonterm that generates some
string. At the end we see if S is marked.

3. For all rules of the form A→σ, mark A.

4. For all rules of the form A→BC if B,C are marked, then
mark A.

4.1 If S is marked then output YES and HALT.
4.2 If no new nonterms are marked then output NO and HALT.
4.3 If a new nonterm is marked but its not S then repeat Step 4.

Numb of iterations ≤ numb of nonterms, so alg is poly time.

Known: P

1. Input G a CFG in Chomsky Normal Form.

2. Our algorithm will mark every nonterm that generates some
string. At the end we see if S is marked.

3. For all rules of the form A→σ, mark A.

4. For all rules of the form A→BC if B,C are marked, then
mark A.

4.1 If S is marked then output YES and HALT.

4.2 If no new nonterms are marked then output NO and HALT.
4.3 If a new nonterm is marked but its not S then repeat Step 4.

Numb of iterations ≤ numb of nonterms, so alg is poly time.

Known: P

1. Input G a CFG in Chomsky Normal Form.

2. Our algorithm will mark every nonterm that generates some
string. At the end we see if S is marked.

3. For all rules of the form A→σ, mark A.

4. For all rules of the form A→BC if B,C are marked, then
mark A.

4.1 If S is marked then output YES and HALT.
4.2 If no new nonterms are marked then output NO and HALT.

4.3 If a new nonterm is marked but its not S then repeat Step 4.

Numb of iterations ≤ numb of nonterms, so alg is poly time.

Known: P

1. Input G a CFG in Chomsky Normal Form.

2. Our algorithm will mark every nonterm that generates some
string. At the end we see if S is marked.

3. For all rules of the form A→σ, mark A.

4. For all rules of the form A→BC if B,C are marked, then
mark A.

4.1 If S is marked then output YES and HALT.
4.2 If no new nonterms are marked then output NO and HALT.
4.3 If a new nonterm is marked but its not S then repeat Step 4.

Numb of iterations ≤ numb of nonterms, so alg is poly time.

Known: P

1. Input G a CFG in Chomsky Normal Form.

2. Our algorithm will mark every nonterm that generates some
string. At the end we see if S is marked.

3. For all rules of the form A→σ, mark A.

4. For all rules of the form A→BC if B,C are marked, then
mark A.

4.1 If S is marked then output YES and HALT.
4.2 If no new nonterms are marked then output NO and HALT.
4.3 If a new nonterm is marked but its not S then repeat Step 4.

Numb of iterations ≤ numb of nonterms, so alg is poly time.

CFL: Σ∗

As shown in a prior lecture, the problem of given a CFL does it
equal Σ∗ is undecidable.

The key step was an algorithm for the following:

Given (e, x) output a CFL for ACCe,x .

CFL: Σ∗

As shown in a prior lecture, the problem of given a CFL does it
equal Σ∗ is undecidable.

The key step was an algorithm for the following:

Given (e, x) output a CFL for ACCe,x .

CFL: Σ∗

As shown in a prior lecture, the problem of given a CFL does it
equal Σ∗ is undecidable.

The key step was an algorithm for the following:

Given (e, x) output a CFL for ACCe,x .

P: ∅

We need a way to represent languages in P.

We take TM along with a poly p.

L(M, p) = {x : M(x) ↓= 1 within time p(|x |) }
Is the following decidable: Given M, p, is L(M, p) = ∅?
No.

We give two proofs.

P: ∅

We need a way to represent languages in P.

We take TM along with a poly p.

L(M, p) = {x : M(x) ↓= 1 within time p(|x |) }
Is the following decidable: Given M, p, is L(M, p) = ∅?
No.

We give two proofs.

P: ∅

We need a way to represent languages in P.

We take TM along with a poly p.

L(M, p) = {x : M(x) ↓= 1 within time p(|x |) }

Is the following decidable: Given M, p, is L(M, p) = ∅?
No.

We give two proofs.

P: ∅

We need a way to represent languages in P.

We take TM along with a poly p.

L(M, p) = {x : M(x) ↓= 1 within time p(|x |) }
Is the following decidable: Given M, p, is L(M, p) = ∅?

No.

We give two proofs.

P: ∅

We need a way to represent languages in P.

We take TM along with a poly p.

L(M, p) = {x : M(x) ↓= 1 within time p(|x |) }
Is the following decidable: Given M, p, is L(M, p) = ∅?
No.

We give two proofs.

P: ∅

We need a way to represent languages in P.

We take TM along with a poly p.

L(M, p) = {x : M(x) ↓= 1 within time p(|x |) }
Is the following decidable: Given M, p, is L(M, p) = ∅?
No.

We give two proofs.

Proof 1: Use CFG-∅

1. Input CFG G . (We want to know if L(G) = Σ∗.)

2. Create Poly time TM M for L(G).
(The Dynamic Programming Algorithm from CYK, but at the
end reverse the answers.)
Let p be its run time.

3. Comment
L(G) = Σ∗→L(G) = ∅→L(M, p) = ∅.
L(G) ̸= Σ∗→L(G) ̸= ∅→L(M, p) ̸= ∅.

4. Using ALG find if L(M, p) = ∅.
If YES then output YES.
If NO then output NO.

Interesting since we are NOT using HALT.
Contrast:
Common to not use SAT to show a problem NPC.
Uncommon to not use HALT to show a problem UNDEC.

Proof 1: Use CFG-∅

1. Input CFG G . (We want to know if L(G) = Σ∗.)

2. Create Poly time TM M for L(G).
(The Dynamic Programming Algorithm from CYK, but at the
end reverse the answers.)
Let p be its run time.

3. Comment
L(G) = Σ∗→L(G) = ∅→L(M, p) = ∅.
L(G) ̸= Σ∗→L(G) ̸= ∅→L(M, p) ̸= ∅.

4. Using ALG find if L(M, p) = ∅.
If YES then output YES.
If NO then output NO.

Interesting since we are NOT using HALT.
Contrast:
Common to not use SAT to show a problem NPC.
Uncommon to not use HALT to show a problem UNDEC.

Proof 1: Use CFG-∅

1. Input CFG G . (We want to know if L(G) = Σ∗.)

2. Create Poly time TM M for L(G).

(The Dynamic Programming Algorithm from CYK, but at the
end reverse the answers.)
Let p be its run time.

3. Comment
L(G) = Σ∗→L(G) = ∅→L(M, p) = ∅.
L(G) ̸= Σ∗→L(G) ̸= ∅→L(M, p) ̸= ∅.

4. Using ALG find if L(M, p) = ∅.
If YES then output YES.
If NO then output NO.

Interesting since we are NOT using HALT.
Contrast:
Common to not use SAT to show a problem NPC.
Uncommon to not use HALT to show a problem UNDEC.

Proof 1: Use CFG-∅

1. Input CFG G . (We want to know if L(G) = Σ∗.)

2. Create Poly time TM M for L(G).
(The Dynamic Programming Algorithm from CYK, but at the
end reverse the answers.)

Let p be its run time.

3. Comment
L(G) = Σ∗→L(G) = ∅→L(M, p) = ∅.
L(G) ̸= Σ∗→L(G) ̸= ∅→L(M, p) ̸= ∅.

4. Using ALG find if L(M, p) = ∅.
If YES then output YES.
If NO then output NO.

Interesting since we are NOT using HALT.
Contrast:
Common to not use SAT to show a problem NPC.
Uncommon to not use HALT to show a problem UNDEC.

Proof 1: Use CFG-∅

1. Input CFG G . (We want to know if L(G) = Σ∗.)

2. Create Poly time TM M for L(G).
(The Dynamic Programming Algorithm from CYK, but at the
end reverse the answers.)
Let p be its run time.

3. Comment
L(G) = Σ∗→L(G) = ∅→L(M, p) = ∅.
L(G) ̸= Σ∗→L(G) ̸= ∅→L(M, p) ̸= ∅.

4. Using ALG find if L(M, p) = ∅.
If YES then output YES.
If NO then output NO.

Interesting since we are NOT using HALT.
Contrast:
Common to not use SAT to show a problem NPC.
Uncommon to not use HALT to show a problem UNDEC.

Proof 1: Use CFG-∅

1. Input CFG G . (We want to know if L(G) = Σ∗.)

2. Create Poly time TM M for L(G).
(The Dynamic Programming Algorithm from CYK, but at the
end reverse the answers.)
Let p be its run time.

3. Comment
L(G) = Σ∗→L(G) = ∅→L(M, p) = ∅.
L(G) ̸= Σ∗→L(G) ̸= ∅→L(M, p) ̸= ∅.

4. Using ALG find if L(M, p) = ∅.
If YES then output YES.
If NO then output NO.

Interesting since we are NOT using HALT.
Contrast:
Common to not use SAT to show a problem NPC.
Uncommon to not use HALT to show a problem UNDEC.

Proof 1: Use CFG-∅

1. Input CFG G . (We want to know if L(G) = Σ∗.)

2. Create Poly time TM M for L(G).
(The Dynamic Programming Algorithm from CYK, but at the
end reverse the answers.)
Let p be its run time.

3. Comment
L(G) = Σ∗→L(G) = ∅→L(M, p) = ∅.
L(G) ̸= Σ∗→L(G) ̸= ∅→L(M, p) ̸= ∅.

4. Using ALG find if L(M, p) = ∅.

If YES then output YES.
If NO then output NO.

Interesting since we are NOT using HALT.
Contrast:
Common to not use SAT to show a problem NPC.
Uncommon to not use HALT to show a problem UNDEC.

Proof 1: Use CFG-∅

1. Input CFG G . (We want to know if L(G) = Σ∗.)

2. Create Poly time TM M for L(G).
(The Dynamic Programming Algorithm from CYK, but at the
end reverse the answers.)
Let p be its run time.

3. Comment
L(G) = Σ∗→L(G) = ∅→L(M, p) = ∅.
L(G) ̸= Σ∗→L(G) ̸= ∅→L(M, p) ̸= ∅.

4. Using ALG find if L(M, p) = ∅.
If YES then output YES.

If NO then output NO.

Interesting since we are NOT using HALT.
Contrast:
Common to not use SAT to show a problem NPC.
Uncommon to not use HALT to show a problem UNDEC.

Proof 1: Use CFG-∅

1. Input CFG G . (We want to know if L(G) = Σ∗.)

2. Create Poly time TM M for L(G).
(The Dynamic Programming Algorithm from CYK, but at the
end reverse the answers.)
Let p be its run time.

3. Comment
L(G) = Σ∗→L(G) = ∅→L(M, p) = ∅.
L(G) ̸= Σ∗→L(G) ̸= ∅→L(M, p) ̸= ∅.

4. Using ALG find if L(M, p) = ∅.
If YES then output YES.
If NO then output NO.

Interesting since we are NOT using HALT.
Contrast:
Common to not use SAT to show a problem NPC.
Uncommon to not use HALT to show a problem UNDEC.

Proof 1: Use CFG-∅

1. Input CFG G . (We want to know if L(G) = Σ∗.)

2. Create Poly time TM M for L(G).
(The Dynamic Programming Algorithm from CYK, but at the
end reverse the answers.)
Let p be its run time.

3. Comment
L(G) = Σ∗→L(G) = ∅→L(M, p) = ∅.
L(G) ̸= Σ∗→L(G) ̸= ∅→L(M, p) ̸= ∅.

4. Using ALG find if L(M, p) = ∅.
If YES then output YES.
If NO then output NO.

Interesting since we are NOT using HALT.

Contrast:
Common to not use SAT to show a problem NPC.
Uncommon to not use HALT to show a problem UNDEC.

Proof 1: Use CFG-∅

1. Input CFG G . (We want to know if L(G) = Σ∗.)

2. Create Poly time TM M for L(G).
(The Dynamic Programming Algorithm from CYK, but at the
end reverse the answers.)
Let p be its run time.

3. Comment
L(G) = Σ∗→L(G) = ∅→L(M, p) = ∅.
L(G) ̸= Σ∗→L(G) ̸= ∅→L(M, p) ̸= ∅.

4. Using ALG find if L(M, p) = ∅.
If YES then output YES.
If NO then output NO.

Interesting since we are NOT using HALT.
Contrast:

Common to not use SAT to show a problem NPC.
Uncommon to not use HALT to show a problem UNDEC.

Proof 1: Use CFG-∅

1. Input CFG G . (We want to know if L(G) = Σ∗.)

2. Create Poly time TM M for L(G).
(The Dynamic Programming Algorithm from CYK, but at the
end reverse the answers.)
Let p be its run time.

3. Comment
L(G) = Σ∗→L(G) = ∅→L(M, p) = ∅.
L(G) ̸= Σ∗→L(G) ̸= ∅→L(M, p) ̸= ∅.

4. Using ALG find if L(M, p) = ∅.
If YES then output YES.
If NO then output NO.

Interesting since we are NOT using HALT.
Contrast:
Common to not use SAT to show a problem NPC.

Uncommon to not use HALT to show a problem UNDEC.

Proof 1: Use CFG-∅

1. Input CFG G . (We want to know if L(G) = Σ∗.)

2. Create Poly time TM M for L(G).
(The Dynamic Programming Algorithm from CYK, but at the
end reverse the answers.)
Let p be its run time.

3. Comment
L(G) = Σ∗→L(G) = ∅→L(M, p) = ∅.
L(G) ̸= Σ∗→L(G) ̸= ∅→L(M, p) ̸= ∅.

4. Using ALG find if L(M, p) = ∅.
If YES then output YES.
If NO then output NO.

Interesting since we are NOT using HALT.
Contrast:
Common to not use SAT to show a problem NPC.
Uncommon to not use HALT to show a problem UNDEC.

Proof 2: Use HALT

Assume, BWOC, that L(M, p) = ∅ problem is DEC.
We also take Σ = {1}.

We show that HALT is DEC.

1. Input e, x . (We want to know if Me(x) ↓.)
2. Create a machine M and poly p as follows:

2.1 Input 1s (This is 1 · · · 1.)
2.2 Run Me(x) for s steps.

(For technical reasons this take O(s log s) ≤ s2 time.)
2.3 If Me,s(x) ↓ then output YES. If not then output NO.

3. Test if L(M, n2) = ∅.
3.1 If L(M, n2) = ∅ then output NO (Me(x) ↑).
3.2 If L(M, n2) ̸= ∅ then output YES (Me(x) ↓).

Proof 2: Use HALT

Assume, BWOC, that L(M, p) = ∅ problem is DEC.
We also take Σ = {1}.
We show that HALT is DEC.

1. Input e, x . (We want to know if Me(x) ↓.)
2. Create a machine M and poly p as follows:

2.1 Input 1s (This is 1 · · · 1.)
2.2 Run Me(x) for s steps.

(For technical reasons this take O(s log s) ≤ s2 time.)
2.3 If Me,s(x) ↓ then output YES. If not then output NO.

3. Test if L(M, n2) = ∅.
3.1 If L(M, n2) = ∅ then output NO (Me(x) ↑).
3.2 If L(M, n2) ̸= ∅ then output YES (Me(x) ↓).

Proof 2: Use HALT

Assume, BWOC, that L(M, p) = ∅ problem is DEC.
We also take Σ = {1}.
We show that HALT is DEC.

1. Input e, x . (We want to know if Me(x) ↓.)

2. Create a machine M and poly p as follows:

2.1 Input 1s (This is 1 · · · 1.)
2.2 Run Me(x) for s steps.

(For technical reasons this take O(s log s) ≤ s2 time.)
2.3 If Me,s(x) ↓ then output YES. If not then output NO.

3. Test if L(M, n2) = ∅.
3.1 If L(M, n2) = ∅ then output NO (Me(x) ↑).
3.2 If L(M, n2) ̸= ∅ then output YES (Me(x) ↓).

Proof 2: Use HALT

Assume, BWOC, that L(M, p) = ∅ problem is DEC.
We also take Σ = {1}.
We show that HALT is DEC.

1. Input e, x . (We want to know if Me(x) ↓.)
2. Create a machine M and poly p as follows:

2.1 Input 1s (This is 1 · · · 1.)
2.2 Run Me(x) for s steps.

(For technical reasons this take O(s log s) ≤ s2 time.)
2.3 If Me,s(x) ↓ then output YES. If not then output NO.

3. Test if L(M, n2) = ∅.
3.1 If L(M, n2) = ∅ then output NO (Me(x) ↑).
3.2 If L(M, n2) ̸= ∅ then output YES (Me(x) ↓).

Proof 2: Use HALT

Assume, BWOC, that L(M, p) = ∅ problem is DEC.
We also take Σ = {1}.
We show that HALT is DEC.

1. Input e, x . (We want to know if Me(x) ↓.)
2. Create a machine M and poly p as follows:

2.1 Input 1s (This is 1 · · · 1.)

2.2 Run Me(x) for s steps.
(For technical reasons this take O(s log s) ≤ s2 time.)

2.3 If Me,s(x) ↓ then output YES. If not then output NO.

3. Test if L(M, n2) = ∅.
3.1 If L(M, n2) = ∅ then output NO (Me(x) ↑).
3.2 If L(M, n2) ̸= ∅ then output YES (Me(x) ↓).

Proof 2: Use HALT

Assume, BWOC, that L(M, p) = ∅ problem is DEC.
We also take Σ = {1}.
We show that HALT is DEC.

1. Input e, x . (We want to know if Me(x) ↓.)
2. Create a machine M and poly p as follows:

2.1 Input 1s (This is 1 · · · 1.)
2.2 Run Me(x) for s steps.

(For technical reasons this take O(s log s) ≤ s2 time.)
2.3 If Me,s(x) ↓ then output YES. If not then output NO.

3. Test if L(M, n2) = ∅.
3.1 If L(M, n2) = ∅ then output NO (Me(x) ↑).
3.2 If L(M, n2) ̸= ∅ then output YES (Me(x) ↓).

Proof 2: Use HALT

Assume, BWOC, that L(M, p) = ∅ problem is DEC.
We also take Σ = {1}.
We show that HALT is DEC.

1. Input e, x . (We want to know if Me(x) ↓.)
2. Create a machine M and poly p as follows:

2.1 Input 1s (This is 1 · · · 1.)
2.2 Run Me(x) for s steps.

(For technical reasons this take O(s log s) ≤ s2 time.)

2.3 If Me,s(x) ↓ then output YES. If not then output NO.

3. Test if L(M, n2) = ∅.
3.1 If L(M, n2) = ∅ then output NO (Me(x) ↑).
3.2 If L(M, n2) ̸= ∅ then output YES (Me(x) ↓).

Proof 2: Use HALT

Assume, BWOC, that L(M, p) = ∅ problem is DEC.
We also take Σ = {1}.
We show that HALT is DEC.

1. Input e, x . (We want to know if Me(x) ↓.)
2. Create a machine M and poly p as follows:

2.1 Input 1s (This is 1 · · · 1.)
2.2 Run Me(x) for s steps.

(For technical reasons this take O(s log s) ≤ s2 time.)
2.3 If Me,s(x) ↓ then output YES. If not then output NO.

3. Test if L(M, n2) = ∅.
3.1 If L(M, n2) = ∅ then output NO (Me(x) ↑).
3.2 If L(M, n2) ̸= ∅ then output YES (Me(x) ↓).

Proof 2: Use HALT

Assume, BWOC, that L(M, p) = ∅ problem is DEC.
We also take Σ = {1}.
We show that HALT is DEC.

1. Input e, x . (We want to know if Me(x) ↓.)
2. Create a machine M and poly p as follows:

2.1 Input 1s (This is 1 · · · 1.)
2.2 Run Me(x) for s steps.

(For technical reasons this take O(s log s) ≤ s2 time.)
2.3 If Me,s(x) ↓ then output YES. If not then output NO.

3. Test if L(M, n2) = ∅.

3.1 If L(M, n2) = ∅ then output NO (Me(x) ↑).
3.2 If L(M, n2) ̸= ∅ then output YES (Me(x) ↓).

Proof 2: Use HALT

Assume, BWOC, that L(M, p) = ∅ problem is DEC.
We also take Σ = {1}.
We show that HALT is DEC.

1. Input e, x . (We want to know if Me(x) ↓.)
2. Create a machine M and poly p as follows:

2.1 Input 1s (This is 1 · · · 1.)
2.2 Run Me(x) for s steps.

(For technical reasons this take O(s log s) ≤ s2 time.)
2.3 If Me,s(x) ↓ then output YES. If not then output NO.

3. Test if L(M, n2) = ∅.
3.1 If L(M, n2) = ∅ then output NO (Me(x) ↑).

3.2 If L(M, n2) ̸= ∅ then output YES (Me(x) ↓).

Proof 2: Use HALT

Assume, BWOC, that L(M, p) = ∅ problem is DEC.
We also take Σ = {1}.
We show that HALT is DEC.

1. Input e, x . (We want to know if Me(x) ↓.)
2. Create a machine M and poly p as follows:

2.1 Input 1s (This is 1 · · · 1.)
2.2 Run Me(x) for s steps.

(For technical reasons this take O(s log s) ≤ s2 time.)
2.3 If Me,s(x) ↓ then output YES. If not then output NO.

3. Test if L(M, n2) = ∅.
3.1 If L(M, n2) = ∅ then output NO (Me(x) ↑).
3.2 If L(M, n2) ̸= ∅ then output YES (Me(x) ↓).

P: Σ∗

Is the following decidable: Given M, p, is L(M, p) = Σ∗?
No.
Assume, BWOC, that L(M, p) = Σ∗ is DEC.
We show that HALT is DEC.

1. Input e, x . (We want to know if Me(x) ↓.)
2. Create a machine M and poly p as follows:

2.1 Input 1s (This is 1 · · · 1.)
2.2 Run Me(x) for s steps.

(For technical reasons this take s log s ≤ s2 time.)
2.3 If Me,s(x) ↓ then output NO. If not then output YES.

3. Test if L(M, n2) = Σ∗.

3.1 If L(M, n2) = Σ∗ then output NO (Me(x) ↑).
3.2 If L(M, n2) ̸= Σ∗ then output YES (Me(x) ↓).

P: Σ∗

Is the following decidable: Given M, p, is L(M, p) = Σ∗?

No.
Assume, BWOC, that L(M, p) = Σ∗ is DEC.
We show that HALT is DEC.

1. Input e, x . (We want to know if Me(x) ↓.)
2. Create a machine M and poly p as follows:

2.1 Input 1s (This is 1 · · · 1.)
2.2 Run Me(x) for s steps.

(For technical reasons this take s log s ≤ s2 time.)
2.3 If Me,s(x) ↓ then output NO. If not then output YES.

3. Test if L(M, n2) = Σ∗.

3.1 If L(M, n2) = Σ∗ then output NO (Me(x) ↑).
3.2 If L(M, n2) ̸= Σ∗ then output YES (Me(x) ↓).

P: Σ∗

Is the following decidable: Given M, p, is L(M, p) = Σ∗?
No.

Assume, BWOC, that L(M, p) = Σ∗ is DEC.
We show that HALT is DEC.

1. Input e, x . (We want to know if Me(x) ↓.)
2. Create a machine M and poly p as follows:

2.1 Input 1s (This is 1 · · · 1.)
2.2 Run Me(x) for s steps.

(For technical reasons this take s log s ≤ s2 time.)
2.3 If Me,s(x) ↓ then output NO. If not then output YES.

3. Test if L(M, n2) = Σ∗.

3.1 If L(M, n2) = Σ∗ then output NO (Me(x) ↑).
3.2 If L(M, n2) ̸= Σ∗ then output YES (Me(x) ↓).

P: Σ∗

Is the following decidable: Given M, p, is L(M, p) = Σ∗?
No.
Assume, BWOC, that L(M, p) = Σ∗ is DEC.

We show that HALT is DEC.

1. Input e, x . (We want to know if Me(x) ↓.)
2. Create a machine M and poly p as follows:

2.1 Input 1s (This is 1 · · · 1.)
2.2 Run Me(x) for s steps.

(For technical reasons this take s log s ≤ s2 time.)
2.3 If Me,s(x) ↓ then output NO. If not then output YES.

3. Test if L(M, n2) = Σ∗.

3.1 If L(M, n2) = Σ∗ then output NO (Me(x) ↑).
3.2 If L(M, n2) ̸= Σ∗ then output YES (Me(x) ↓).

P: Σ∗

Is the following decidable: Given M, p, is L(M, p) = Σ∗?
No.
Assume, BWOC, that L(M, p) = Σ∗ is DEC.
We show that HALT is DEC.

1. Input e, x . (We want to know if Me(x) ↓.)
2. Create a machine M and poly p as follows:

2.1 Input 1s (This is 1 · · · 1.)
2.2 Run Me(x) for s steps.

(For technical reasons this take s log s ≤ s2 time.)
2.3 If Me,s(x) ↓ then output NO. If not then output YES.

3. Test if L(M, n2) = Σ∗.

3.1 If L(M, n2) = Σ∗ then output NO (Me(x) ↑).
3.2 If L(M, n2) ̸= Σ∗ then output YES (Me(x) ↓).

P: Σ∗

Is the following decidable: Given M, p, is L(M, p) = Σ∗?
No.
Assume, BWOC, that L(M, p) = Σ∗ is DEC.
We show that HALT is DEC.

1. Input e, x . (We want to know if Me(x) ↓.)

2. Create a machine M and poly p as follows:

2.1 Input 1s (This is 1 · · · 1.)
2.2 Run Me(x) for s steps.

(For technical reasons this take s log s ≤ s2 time.)
2.3 If Me,s(x) ↓ then output NO. If not then output YES.

3. Test if L(M, n2) = Σ∗.

3.1 If L(M, n2) = Σ∗ then output NO (Me(x) ↑).
3.2 If L(M, n2) ̸= Σ∗ then output YES (Me(x) ↓).

P: Σ∗

Is the following decidable: Given M, p, is L(M, p) = Σ∗?
No.
Assume, BWOC, that L(M, p) = Σ∗ is DEC.
We show that HALT is DEC.

1. Input e, x . (We want to know if Me(x) ↓.)
2. Create a machine M and poly p as follows:

2.1 Input 1s (This is 1 · · · 1.)
2.2 Run Me(x) for s steps.

(For technical reasons this take s log s ≤ s2 time.)
2.3 If Me,s(x) ↓ then output NO. If not then output YES.

3. Test if L(M, n2) = Σ∗.

3.1 If L(M, n2) = Σ∗ then output NO (Me(x) ↑).
3.2 If L(M, n2) ̸= Σ∗ then output YES (Me(x) ↓).

P: Σ∗

Is the following decidable: Given M, p, is L(M, p) = Σ∗?
No.
Assume, BWOC, that L(M, p) = Σ∗ is DEC.
We show that HALT is DEC.

1. Input e, x . (We want to know if Me(x) ↓.)
2. Create a machine M and poly p as follows:

2.1 Input 1s (This is 1 · · · 1.)

2.2 Run Me(x) for s steps.
(For technical reasons this take s log s ≤ s2 time.)

2.3 If Me,s(x) ↓ then output NO. If not then output YES.

3. Test if L(M, n2) = Σ∗.

3.1 If L(M, n2) = Σ∗ then output NO (Me(x) ↑).
3.2 If L(M, n2) ̸= Σ∗ then output YES (Me(x) ↓).

P: Σ∗

Is the following decidable: Given M, p, is L(M, p) = Σ∗?
No.
Assume, BWOC, that L(M, p) = Σ∗ is DEC.
We show that HALT is DEC.

1. Input e, x . (We want to know if Me(x) ↓.)
2. Create a machine M and poly p as follows:

2.1 Input 1s (This is 1 · · · 1.)
2.2 Run Me(x) for s steps.

(For technical reasons this take s log s ≤ s2 time.)
2.3 If Me,s(x) ↓ then output NO. If not then output YES.

3. Test if L(M, n2) = Σ∗.

3.1 If L(M, n2) = Σ∗ then output NO (Me(x) ↑).
3.2 If L(M, n2) ̸= Σ∗ then output YES (Me(x) ↓).

P: Σ∗

Is the following decidable: Given M, p, is L(M, p) = Σ∗?
No.
Assume, BWOC, that L(M, p) = Σ∗ is DEC.
We show that HALT is DEC.

1. Input e, x . (We want to know if Me(x) ↓.)
2. Create a machine M and poly p as follows:

2.1 Input 1s (This is 1 · · · 1.)
2.2 Run Me(x) for s steps.

(For technical reasons this take s log s ≤ s2 time.)

2.3 If Me,s(x) ↓ then output NO. If not then output YES.

3. Test if L(M, n2) = Σ∗.

3.1 If L(M, n2) = Σ∗ then output NO (Me(x) ↑).
3.2 If L(M, n2) ̸= Σ∗ then output YES (Me(x) ↓).

P: Σ∗

Is the following decidable: Given M, p, is L(M, p) = Σ∗?
No.
Assume, BWOC, that L(M, p) = Σ∗ is DEC.
We show that HALT is DEC.

1. Input e, x . (We want to know if Me(x) ↓.)
2. Create a machine M and poly p as follows:

2.1 Input 1s (This is 1 · · · 1.)
2.2 Run Me(x) for s steps.

(For technical reasons this take s log s ≤ s2 time.)
2.3 If Me,s(x) ↓ then output NO. If not then output YES.

3. Test if L(M, n2) = Σ∗.

3.1 If L(M, n2) = Σ∗ then output NO (Me(x) ↑).
3.2 If L(M, n2) ̸= Σ∗ then output YES (Me(x) ↓).

P: Σ∗

Is the following decidable: Given M, p, is L(M, p) = Σ∗?
No.
Assume, BWOC, that L(M, p) = Σ∗ is DEC.
We show that HALT is DEC.

1. Input e, x . (We want to know if Me(x) ↓.)
2. Create a machine M and poly p as follows:

2.1 Input 1s (This is 1 · · · 1.)
2.2 Run Me(x) for s steps.

(For technical reasons this take s log s ≤ s2 time.)
2.3 If Me,s(x) ↓ then output NO. If not then output YES.

3. Test if L(M, n2) = Σ∗.

3.1 If L(M, n2) = Σ∗ then output NO (Me(x) ↑).
3.2 If L(M, n2) ̸= Σ∗ then output YES (Me(x) ↓).

P: Σ∗

Is the following decidable: Given M, p, is L(M, p) = Σ∗?
No.
Assume, BWOC, that L(M, p) = Σ∗ is DEC.
We show that HALT is DEC.

1. Input e, x . (We want to know if Me(x) ↓.)
2. Create a machine M and poly p as follows:

2.1 Input 1s (This is 1 · · · 1.)
2.2 Run Me(x) for s steps.

(For technical reasons this take s log s ≤ s2 time.)
2.3 If Me,s(x) ↓ then output NO. If not then output YES.

3. Test if L(M, n2) = Σ∗.

3.1 If L(M, n2) = Σ∗ then output NO (Me(x) ↑).

3.2 If L(M, n2) ̸= Σ∗ then output YES (Me(x) ↓).

P: Σ∗

Is the following decidable: Given M, p, is L(M, p) = Σ∗?
No.
Assume, BWOC, that L(M, p) = Σ∗ is DEC.
We show that HALT is DEC.

1. Input e, x . (We want to know if Me(x) ↓.)
2. Create a machine M and poly p as follows:

2.1 Input 1s (This is 1 · · · 1.)
2.2 Run Me(x) for s steps.

(For technical reasons this take s log s ≤ s2 time.)
2.3 If Me,s(x) ↓ then output NO. If not then output YES.

3. Test if L(M, n2) = Σ∗.

3.1 If L(M, n2) = Σ∗ then output NO (Me(x) ↑).
3.2 If L(M, n2) ̸= Σ∗ then output YES (Me(x) ↓).

NP, DEC, Σ1

For NP, DEC, Σ1 the L(M) = ∅ is undecidable.

For NP, DEC, Σ1 the L(M) = Σ∗ is undecidable.

Proofs are similar to that for P.

NP, DEC, Σ1

For NP, DEC, Σ1 the L(M) = ∅ is undecidable.

For NP, DEC, Σ1 the L(M) = Σ∗ is undecidable.

Proofs are similar to that for P.

NP, DEC, Σ1

For NP, DEC, Σ1 the L(M) = ∅ is undecidable.

For NP, DEC, Σ1 the L(M) = Σ∗ is undecidable.

Proofs are similar to that for P.

NP, DEC, Σ1

For NP, DEC, Σ1 the L(M) = ∅ is undecidable.

For NP, DEC, Σ1 the L(M) = Σ∗ is undecidable.

Proofs are similar to that for P.

The Σn Problem

Given M does there exist n such that Σn ⊆ L(M)?

1. For DFA this problem is NP-complete.

Interesting Very few problems about DFAs are NP-complete.

2. For CFG this problem is PSPACE-hard but Open as to
whether or not its in PSPACE .

Interesting Very few problems about CFG’s are open.

For P, NP, DEC, Σ1, Undecidable.

Boring Most problems about P, NP, DEC, Σ1 are undecidable.

The Σn Problem

Given M does there exist n such that Σn ⊆ L(M)?

1. For DFA this problem is NP-complete.

Interesting Very few problems about DFAs are NP-complete.

2. For CFG this problem is PSPACE-hard but Open as to
whether or not its in PSPACE .

Interesting Very few problems about CFG’s are open.

For P, NP, DEC, Σ1, Undecidable.

Boring Most problems about P, NP, DEC, Σ1 are undecidable.

The Σn Problem

Given M does there exist n such that Σn ⊆ L(M)?

1. For DFA this problem is NP-complete.

Interesting Very few problems about DFAs are NP-complete.

2. For CFG this problem is PSPACE-hard but Open as to
whether or not its in PSPACE .

Interesting Very few problems about CFG’s are open.

For P, NP, DEC, Σ1, Undecidable.

Boring Most problems about P, NP, DEC, Σ1 are undecidable.

The Σn Problem

Given M does there exist n such that Σn ⊆ L(M)?

1. For DFA this problem is NP-complete.

Interesting Very few problems about DFAs are NP-complete.

2. For CFG this problem is PSPACE-hard but Open as to
whether or not its in PSPACE .

Interesting Very few problems about CFG’s are open.

For P, NP, DEC, Σ1, Undecidable.

Boring Most problems about P, NP, DEC, Σ1 are undecidable.

The Σn Problem

Given M does there exist n such that Σn ⊆ L(M)?

1. For DFA this problem is NP-complete.

Interesting Very few problems about DFAs are NP-complete.

2. For CFG this problem is PSPACE-hard but Open as to
whether or not its in PSPACE .

Interesting Very few problems about CFG’s are open.

For P, NP, DEC, Σ1, Undecidable.

Boring Most problems about P, NP, DEC, Σ1 are undecidable.

The Σn Problem

Given M does there exist n such that Σn ⊆ L(M)?

1. For DFA this problem is NP-complete.

Interesting Very few problems about DFAs are NP-complete.

2. For CFG this problem is PSPACE-hard but Open as to
whether or not its in PSPACE .

Interesting Very few problems about CFG’s are open.

For P, NP, DEC, Σ1, Undecidable.

Boring Most problems about P, NP, DEC, Σ1 are undecidable.

The Σn Problem

Given M does there exist n such that Σn ⊆ L(M)?

1. For DFA this problem is NP-complete.

Interesting Very few problems about DFAs are NP-complete.

2. For CFG this problem is PSPACE-hard but Open as to
whether or not its in PSPACE .

Interesting Very few problems about CFG’s are open.

For P, NP, DEC, Σ1, Undecidable.

Boring Most problems about P, NP, DEC, Σ1 are undecidable.

