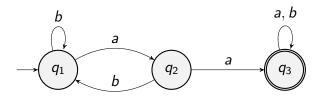
Two Fine Languages

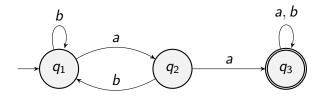
The language L_a is the set of words over $\{a, b\}$ with two consecutive *a*'s. DFA for L_a :



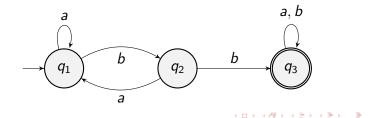
<ロト < 同ト < 日ト < 日ト < 三 ト = 三 三 三

Two Fine Languages

The language L_a is the set of words over $\{a, b\}$ with two consecutive *a*'s. DFA for L_a :



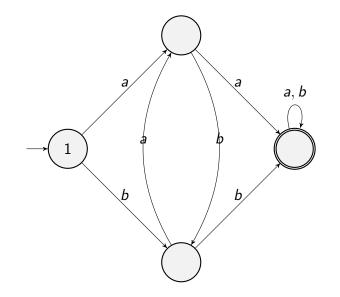
The language L_b is the set of words over $\{a, b\}$ with two consecutive *b*'s. DFA for L_b :



Union: $L_a \cup L_b$

・ロト・日本・日本・日本・日本・

Union: $L_a \cup L_b$



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Intersection: $L_a \cap L_b$



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

Idea: First check two *a*'s then check two *b*'s.

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

Idea: First check two a's then check two b's. No!

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

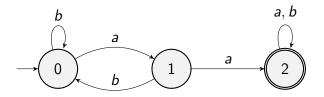
Idea: First check two a's then check two b's. No!

Must do two checks in parallel by "running both machines at once".

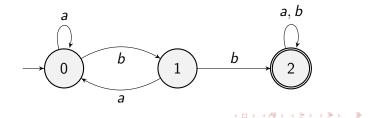
*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Two Fine Languages

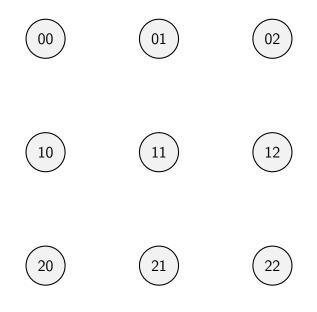
The language L_a is the set of words over $\{a, b\}$ with two consecutive *a*'s. DFA for L_a :



The language L_b is the set of words over $\{a, b\}$ with two consecutive *b*'s. DFA for L_b :

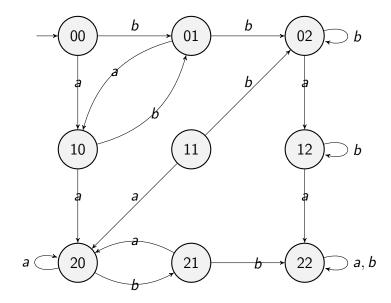


Grid



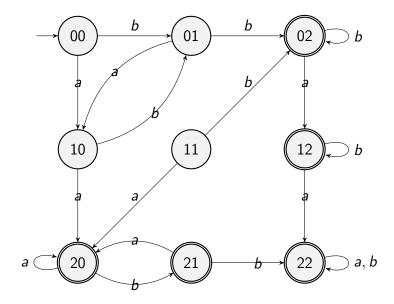
(4日) (個) (目) (目) (目) (1000)

Grid

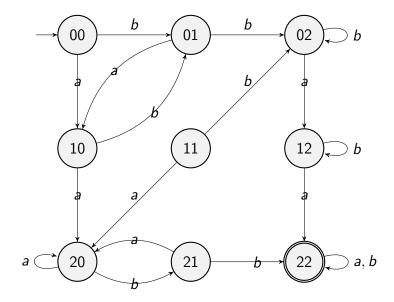


・ロト・日本・日本・日本・日本・日本

Union: $L_a \cup L_b$



Intersection: $L_a \cap L_b$



IF L_1, L_2 are regular we want to show that $L_1 \cup L_2$ is regular.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

IF L_1, L_2 are regular we want to show that $L_1 \cup L_2$ is regular. Informally Create a DFA that runs both the DFA for L_1 and L_2 at the same time.

IF L_1, L_2 are regular we want to show that $L_1 \cup L_2$ is regular.

Informally Create a DFA that runs both the DFA for L_1 and L_2 at the same time.

Formally If L_1 is regular via $(Q_1, \Sigma, \delta_1, s_1, F_1)$ and L_2 is regular via $(Q_2, \Sigma, \delta_2, s_2, F_2)$ then $L_1 \cup L_2$ is regular via:

IF L_1, L_2 are regular we want to show that $L_1 \cup L_2$ is regular.

Informally Create a DFA that runs both the DFA for L_1 and L_2 at the same time.

Formally If L_1 is regular via $(Q_1, \Sigma, \delta_1, s_1, F_1)$ and L_2 is regular via $(Q_2, \Sigma, \delta_2, s_2, F_2)$ then $L_1 \cup L_2$ is regular via:

$$(Q_1 \times Q_2, \Sigma, \delta, (s_1, s_2), F)$$

where

$$\delta((q_1, q_2), \sigma) = (\delta_1(q_1, \sigma), \delta_2(q_2, \sigma))$$

and

IF L_1, L_2 are regular we want to show that $L_1 \cup L_2$ is regular.

Informally Create a DFA that runs both the DFA for L_1 and L_2 at the same time.

Formally If L_1 is regular via $(Q_1, \Sigma, \delta_1, s_1, F_1)$ and L_2 is regular via $(Q_2, \Sigma, \delta_2, s_2, F_2)$ then $L_1 \cup L_2$ is regular via:

$$(Q_1 \times Q_2, \Sigma, \delta, (s_1, s_2), F)$$

where

$$\delta((q_1,q_2),\sigma) = (\delta_1(q_1,\sigma),\delta_2(q_2,\sigma))$$

and

$$F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$$

IF L_1, L_2 are regular we want to show that $L_1 \cup L_2$ is regular.

Informally Create a DFA that runs both the DFA for L_1 and L_2 at the same time.

Formally If L_1 is regular via $(Q_1, \Sigma, \delta_1, s_1, F_1)$ and L_2 is regular via $(Q_2, \Sigma, \delta_2, s_2, F_2)$ then $L_1 \cup L_2$ is regular via:

$$(Q_1 \times Q_2, \Sigma, \delta, (s_1, s_2), F)$$

where

$$\delta((q_1, q_2), \sigma) = (\delta_1(q_1, \sigma), \delta_2(q_2, \sigma))$$

and

$$F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$$

Note The number of states in DFA for $L_1 \cup L_2$ is $n_1 n_2$.

IF L_1, L_2 are regular we want to show that $L_1 \cap L_2$ is regular.

IF L_1, L_2 are regular we want to show that $L_1 \cap L_2$ is regular. Formally If L_1 is regular via $(Q_1, \Sigma, \delta_1, s_1, F_1)$ and L_2 is regular via $(Q_2, \Sigma, \delta_2, s_2, F_2)$

IF L_1, L_2 are regular we want to show that $L_1 \cap L_2$ is regular. Formally If L_1 is regular via $(Q_1, \Sigma, \delta_1, s_1, F_1)$ and L_2 is regular via $(Q_2, \Sigma, \delta_2, s_2, F_2)$ then $L_1 \cap L_2$ is regular via:

IF L_1, L_2 are regular we want to show that $L_1 \cap L_2$ is regular. Formally If L_1 is regular via $(Q_1, \Sigma, \delta_1, s_1, F_1)$ and L_2 is regular via $(Q_2, \Sigma, \delta_2, s_2, F_2)$ then $L_1 \cap L_2$ is regular via:

$$(Q_1 \times Q_2, \Sigma, \delta, (s_1, s_2), F)$$

where

$$\delta((q_1,q_2),\sigma) = (\delta_1(q_1,\sigma),\delta_2(q_2,\sigma))$$

and

IF L_1, L_2 are regular we want to show that $L_1 \cap L_2$ is regular. Formally If L_1 is regular via $(Q_1, \Sigma, \delta_1, s_1, F_1)$ and L_2 is regular via $(Q_2, \Sigma, \delta_2, s_2, F_2)$ then $L_1 \cap L_2$ is regular via:

$$(Q_1 \times Q_2, \Sigma, \delta, (s_1, s_2), F)$$

where

$$\delta((q_1,q_2),\sigma) = (\delta_1(q_1,\sigma),\delta_2(q_2,\sigma))$$

and

$$F = F_1 \times F_2$$

IF L_1, L_2 are regular we want to show that $L_1 \cap L_2$ is regular. Formally If L_1 is regular via $(Q_1, \Sigma, \delta_1, s_1, F_1)$ and L_2 is regular via $(Q_2, \Sigma, \delta_2, s_2, F_2)$ then $L_1 \cap L_2$ is regular via:

$$(Q_1 \times Q_2, \Sigma, \delta, (s_1, s_2), F)$$

where

$$\delta((q_1,q_2),\sigma) = (\delta_1(q_1,\sigma),\delta_2(q_2,\sigma))$$

and

$$F = F_1 \times F_2$$

Note The number of states in DFA for $L_1 \cap L_2$ is n_1n_2 .

How do you compliment a regular language?

How do you compliment a regular language? **Example** How do you compliment a^* ?

How do you compliment a regular language? **Example** How do you compliment *a**? I find the way all of your strings have only *a*'s so lovely!

How do you compliment a regular language? **Example** How do you compliment *a**? I find the way all of your strings have only *a*'s so lovely!

Compliment An expression of admiration.

How do you compliment a regular language? **Example** How do you compliment *a**? I find the way all of your strings have only *a*'s so lovely!

Complement An expression of admiration. **Complement** The complement of *L* is $\Sigma^* - L$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

How do you complement a regular language?

How do you complement a regular language? Informally Swap the final and non-final states.

How do you complement a regular language? Informally Swap the final and non-final states. Formally If *L* is regular via

$$(Q, \Sigma, \delta, s, F)$$

then \overline{L} is regular via

$$(Q, \Sigma, \delta, s, Q - F).$$

How do you complement a regular language? Informally Swap the final and non-final states. Formally If *L* is regular via

$$(Q, \Sigma, \delta, s, F)$$

then \overline{L} is regular via

$$(Q, \Sigma, \delta, s, Q - F).$$

ション ふゆ アメリア メリア しょうくしゃ

Note If DFA for *L* has *n* states then DFA for \overline{L} has *n* states.

Regular Lang Closed Under Concatenation?

Question Is the following true?

IF L_1, L_2 are regular then $L_1 \cdot L_2$ is regular.

Question Is the following true? IF L_1, L_2 are regular then $L_1 \cdot L_2$ is regular. Vote YES, NO, or UNKNOWN TO SCIENCE.

Question Is the following true? IF L_1, L_2 are regular then $L_1 \cdot L_2$ is regular. Vote YES, NO, or UNKNOWN TO SCIENCE. YES

Question Is the following true?

IF L_1, L_2 are regular then $L_1 \cdot L_2$ is regular. Vote YES, NO, or UNKNOWN TO SCIENCE. YES Good News There is a way to prove it using DFAs.

Question Is the following true?

IF L_1, L_2 are regular then $L_1 \cdot L_2$ is regular. Vote YES, NO, or UNKNOWN TO SCIENCE. YES Good News There is a way to prove it using DFAs. Bad News Proof is a mess!

Question Is the following true?

IF L_1 , L_2 are regular then $L_1 \cdot L_2$ is regular. Vote YES, NO, or UNKNOWN TO SCIENCE. YES

Good News There is a way to prove it using DFAs.

Bad News Proof is a mess!

Good News We can have a nice proof after we establish equivalence of DFAs and NFAs.

Question Is the following true? IF L is regular then L^* is regular.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Question Is the following true? IF L is regular then L^* is regular. Vote YES, NO, or UNKNOWN TO SCIENCE.

Question Is the following true? IF *L* is regular then *L** is regular. Vote YES, NO, or UNKNOWN TO SCIENCE. YES

Question Is the following true?
IF L is regular then L* is regular.
Vote YES, NO, or UNKNOWN TO SCIENCE.
YES
Good News There is a way to prove it using DFAs.

Question Is the following true? IF *L* is regular then *L** is regular.
Vote YES, NO, or UNKNOWN TO SCIENCE.
YES
Good News There is a way to prove it using DFAs.
Bad News Proof is a mess!

Question Is the following true? IF L is regular then L* is regular.
Vote YES, NO, or UNKNOWN TO SCIENCE.
YES
Good News There is a way to prove it using DFAs.
Bad News Proof is a mess!
Good News We can have a nice proof after we establish equivalence of DFAs and NFAs.

Summary of Closure Properties and Proofs

X means Can't Prove Easily

 $n_1 + n_2$ (and similar) is number of states in new machine if L_i reg via n_i -state machine.

Closure Property	DFA
$L_1 \cup L_2$	<i>n</i> ₁ <i>n</i> ₂
$L_1 \cap L_2$	<i>n</i> ₁ <i>n</i> ₂
$L_1 \cdot L_2$	Х
Ī	n
L*	X

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

BILL, STOP RECORDING LECTURE!!!!

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

BILL STOP RECORDING LECTURE!!!