BILL AND NATHAN START RECORDING

Context Free Languages

I am supposed to say:

I am supposed to say:

Most prog langs are Context Free Languages

I am supposed to say:

Most prog langs are Context Free Languages
However, this is not quite true. PL people - discuss!

I am supposed to say:

Most prog langs are Context Free Languages

However, this is not quite true. PL people - discuss!

However, most programming languages are almost context free.

I am supposed to say:

Most prog langs are Context Free Languages

However, this is not quite true. PL people - discuss!

However, most programming languages are almost context free.

I am supposed to say:

Most prog langs are Context Free Languages

However, this is not quite true. PL people - discuss!

However, most programming languages are almost context free.

Our interest in CFL's is:

1) Languages that require a LARGE NFA but a SMALL CFG.

I am supposed to say:

Most prog langs are Context Free Languages

However, this is not quite true. PL people - discuss!

However, most programming languages are almost context free.

- 1) Languages that require a LARGE NFA but a SMALL CFG.
- 2) Closure properties of CFLs.

I am supposed to say:

Most prog langs are Context Free Languages

However, this is not quite true. PL people - discuss!

However, most programming languages are almost context free.

- 1) Languages that require a LARGE NFA but a SMALL CFG.
- 2) Closure properties of CFLs.
- 3) CFL's are all in P (poly time).

I am supposed to say:

Most prog langs are Context Free Languages

However, this is not quite true. PL people - discuss!

However, most programming languages are almost context free.

- 1) Languages that require a LARGE NFA but a SMALL CFG.
- 2) Closure properties of CFLs.
- 3) CFL's are all in P (poly time).
- 4) Which languages are **not** context free?

I am supposed to say:

Most prog langs are Context Free Languages

However, this is not quite true. PL people - discuss!

However, most programming languages are almost context free.

- 1) Languages that require a LARGE NFA but a SMALL CFG.
- 2) Closure properties of CFLs.
- 3) CFL's are all in P (poly time).
- 4) Which languages are not context free?
- 5) Languages that are CFL but not Regular.

Examples of Context Free Grammars

$$S \rightarrow aSb$$

 $S \rightarrow e$

The set of all strings **Generated** is

Examples of Context Free Grammars

$$S \rightarrow aSb$$

 $S \rightarrow e$

The set of all strings **Generated** is

$$L = \{a^n b^n : n \in \mathbb{N}\}$$

Examples of Context Free Grammars

$$S \rightarrow aSb$$

 $S \rightarrow e$

The set of all strings **Generated** is

$$L = \{a^n b^n : n \in \mathbb{N}\}$$

Note *L* is context free lang that is not regular.

Context Free Grammar for $\{a^{2n}b^n : n \in \mathbb{N}\}$

$$S \rightarrow aaSb$$

 $S \rightarrow e$

The set of all strings **Generated** is

Context Free Grammar for $\{a^{2n}b^n : n \in \mathbb{N}\}$

$$S \rightarrow aaSb$$

 $S \rightarrow e$

The set of all strings **Generated** is

$$L = \{a^{2n}b^n : n \in \mathbb{N}\}$$

Context Free Grammar for $\{a^{2n}b^n : n \in \mathbb{N}\}$

$$S \rightarrow aaSb$$

 $S \rightarrow e$

The set of all strings **Generated** is

$$L = \{a^{2n}b^n : n \in \mathbb{N}\}$$

Note *L* is context free lang that is not regular.

Context Free Grammar for $\{a^m b^n : m > n\}$

DISCUSS

Context Free Grammar for $\{a^mb^n : m > n\}$

DISCUSS $S \to AT$ $T \to aTb$ $T \to e$ $A \to Aa$ $A \to a$

Context Free Grammars

Def A **Context Free Grammar** is a tuple $G = (N, \Sigma, R, S)$

- ► *N* is a finite set of **nonterminals**.
- $ightharpoonup \Sigma$ is a finite **alphabet**. Note $\Sigma \cap N = \emptyset$.
- ▶ $R \subseteq N \times (N \cup \Sigma)^*$ and are called **Rules**.
- $ightharpoonup S \in N$, the start symbol.

If A is non-terminal then the CFG gives us gives us rules like:

- ightharpoonup A
 ightharpoonup AB
- ightharpoonup A
 ightarrow a

If A is non-terminal then the CFG gives us gives us rules like:

- ightharpoonup A
 ightharpoonup AB
- ightharpoonup A
 ightharpoonup a

For any string of **terminals and non-terminals** α , $A \Rightarrow \alpha$ means that, starting from A, some combination of the rules produces α .

If A is non-terminal then the CFG gives us gives us rules like:

- ightharpoonup A
 ightharpoonup AB
- ightharpoonup A
 ightharpoonup a

For any string of **terminals and non-terminals** α , $A \Rightarrow \alpha$ means that, starting from A, some combination of the rules produces α . **Examples:**

- $ightharpoonup A \Rightarrow a$
- $ightharpoonup A \Rightarrow aB$

If A is non-terminal then the CFG gives us gives us rules like:

- ightharpoonup A
 ightharpoonup AB
- ightharpoonup A
 ightharpoonup a

For any string of **terminals and non-terminals** α , $A \Rightarrow \alpha$ means that, starting from A, some combination of the rules produces α . **Examples:**

- $ightharpoonup A \Rightarrow a$
- $ightharpoonup A \Rightarrow aB$

Then, if w is string of **non-terminals only**, we define L(G) by:

$$L(G) = \{ w \in \Sigma^* \mid S \Rightarrow w \}$$

Number of a's = Number of b's

ls

$$L = \{ w \mid \#_a(w) = \#_b(w) \}$$

context free?

Let G be the CFG $S \rightarrow aSb$ $S \rightarrow bSa$ $S \rightarrow SS$ $S \rightarrow e$

```
Let G be the CFG S 	oup aSb S 	oup bSa S 	oup bSa S 	oup e Thm L(G) = \{w \mid \#_a(w) = \#_b(w)\}.
```

Let *G* be the CFG

$$S \rightarrow aSb$$

$$S \rightarrow SS$$

$$S \rightarrow e$$

Thm
$$L(G) = \{ w \mid \#_a(w) = \#_b(w) \}.$$

Note This Theorem is **not obvious**. Deserves a proof!

```
Let G be the CFG
```

$$S \rightarrow SS$$

$$S \rightarrow e$$

Thm
$$L(G) = \{ w \mid \#_a(w) = \#_b(w) \}.$$

Note This Theorem is not obvious. Deserves a proof!

Contrast

Let G be the CFG

$$S \rightarrow aSb$$

$$S \rightarrow SS$$

$$S \rightarrow e$$

Thm
$$L(G) = \{ w \mid \#_a(w) = \#_b(w) \}.$$

Note This Theorem is **not obvious**. Deserves a proof!

Contrast

Never proved a DFA recognized language we claimed it did.

Let G be the CFG

$$S \rightarrow aSb$$

$$S \rightarrow SS$$

$$S \rightarrow e$$

Thm
$$L(G) = \{ w \mid \#_a(w) = \#_b(w) \}.$$

Note This Theorem is **not obvious**. Deserves a proof!

Contrast

Never proved a DFA recognized language we claimed it did.

Never proved a regex generated the language we claimed it did.

Let G be the CFG

$$S \rightarrow aSb$$

$$S \rightarrow SS$$

$$S \rightarrow e$$

Thm
$$L(G) = \{ w \mid \#_a(w) = \#_b(w) \}.$$

Note This Theorem is **not obvious**. Deserves a proof!

Contrast

Never proved a DFA recognized language we claimed it did.

Never proved a regex generated the language we claimed it did.

Gasarch's Principle Never prove an obvious Theorem.

Let G be the CFG

$$S \rightarrow aSb$$

$$S \rightarrow bSa$$

$$S \rightarrow SS$$

$$S \rightarrow e$$

Thm
$$L(G) = \{ w \mid \#_a(w) = \#_b(w) \}.$$

Note This Theorem is **not obvious**. Deserves a proof!

Contrast

Never proved a DFA recognized language we claimed it did.

Never proved a regex generated the language we claimed it did.

Gasarch's Principle Never prove an obvious Theorem.

(Exception: a course on foundations. I proved x + y = y + x.)

Deserves a Proof But...

Let G be the CFG $S \rightarrow aSb$ $S \rightarrow bSa$ $S \rightarrow SS$ $S \rightarrow e$

Deserves a Proof But...

```
Let G be the CFG S 	oup aSb S 	oup bSa S 	oup SS S 	oup e Thm L(G) = \{w \mid \#_a(w) = \#_b(w)\}.
```

Deserves a Proof But...

```
Let G be the CFG S \to aSb S \to bSa S \to SS S \to e Thm L(G) = \{w \mid \#_a(w) = \#_b(w)\}. Note This Theorem is not obvious. Deserves a proof!
```

Deserves a Proof But...

```
Let G be the CFG S \to aSb S \to bSa S \to bS S \to e Thm L(G) = \{w \mid \#_a(w) = \#_b(w)\}. Note This Theorem is not obvious. Deserves a proof! Note Proof is messy.
```

Deserves a Proof But...

```
Let G be the CFG
```

 $S \rightarrow aSb$

 $S \rightarrow bSa$

 $S \rightarrow SS$

 $S \rightarrow e$

Thm
$$L(G) = \{ w \mid \#_a(w) = \#_b(w) \}.$$

Note This Theorem is **not obvious**. Deserves a proof!

Note Proof is messy.

Solution The proof is on the slides, but I won't go over it, and you don't need to know it for a HW or Exam.

$$L(G) \subseteq \{ w \mid \#_a(w) = \#_b(w) \}$$

Let G be the CFG
 $S \rightarrow aSb \mid bSa \mid SS \mid e$

$$L(G) \subseteq \{ w \mid \#_a(w) = \#_b(w) \}$$

Thm $L(G) \subseteq \{w \mid \#_a(w) = \#_b(w)\}$. We prove something stronger.

Let $L(G)' = \{\alpha \in \{S, a, b\}^* : S \Rightarrow \alpha\}$ (Note that we allow S in α .)

$$L(G) \subseteq \{ w \mid \#_a(w) = \#_b(w) \}$$

Thm $L(G) \subseteq \{w \mid \#_a(w) = \#_b(w)\}$. We prove something stronger.

Let $L(G)' = \{\alpha \in \{S, a, b\}^* : S \Rightarrow \alpha\}$ (Note that we allow S in α .)

Thm $L(G)' \subseteq \{ w \mid \#_a(w) = \#_b(w) \}.$

$$L(G) \subseteq \{ w \mid \#_a(w) = \#_b(w) \}$$

Thm $L(G) \subseteq \{w \mid \#_a(w) = \#_b(w)\}$. We prove something stronger.

Let $L(G)' = \{\alpha \in \{S, a, b\}^* : S \Rightarrow \alpha\}$ (Note that we allow S in α .)

Thm $L(G)' \subseteq \{ w \mid \#_a(w) = \#_b(w) \}.$

This is by induction on numb of steps in the derivation from S.

$$L(G) \subseteq \{ w \mid \#_a(w) = \#_b(w) \}$$

Thm $L(G) \subseteq \{w \mid \#_a(w) = \#_b(w)\}$. We prove something stronger.

Let $L(G)' = \{\alpha \in \{S, a, b\}^* : S \Rightarrow \alpha\}$ (Note that we allow S in α .)

Thm $L(G)' \subseteq \{ w \mid \#_a(w) = \#_b(w) \}.$

This is by induction on numb of steps in the derivation from S.

Base Case In one step can only get $\alpha \in \{aSb, bSa, SS, e\}$.

$$L(G) \subseteq \{ w \mid \#_a(w) = \#_b(w) \}$$

Thm $L(G) \subseteq \{w \mid \#_a(w) = \#_b(w)\}$. We prove something stronger.

Let $L(G)' = \{\alpha \in \{S, a, b\}^* : S \Rightarrow \alpha\}$ (Note that we allow S in α .)

Thm $L(G)' \subseteq \{ w \mid \#_a(w) = \#_b(w) \}.$

This is by induction on numb of steps in the derivation from S.

Base Case In one step can only get $\alpha \in \{aSb, bSa, SS, e\}$.

Ind Hyp If $S \Rightarrow \beta$ in n-1 steps then $\#_a(\beta) = \#_b(\beta)$.

$$L(G) \subseteq \{w \mid \#_a(w) = \#_b(w)\}$$

Let G be the CFG

 $S
ightarrow aSb \mid bSa \mid SS \mid e$

Thm $L(G) \subseteq \{w \mid \#_a(w) = \#_b(w)\}$. We prove something stronger.

Let $L(G)' = \{\alpha \in \{S, a, b\}^* : S \Rightarrow \alpha\}$ (Note that we allow S in α .)

Thm $L(G)' \subseteq \{ w \mid \#_a(w) = \#_b(w) \}.$

This is by induction on numb of steps in the derivation from S.

Base Case In one step can only get $\alpha \in \{aSb, bSa, SS, e\}$.

Ind Hyp If $S \Rightarrow \beta$ in n-1 steps then $\#_a(\beta) = \#_b(\beta)$.

Ind Step Assume $S \Rightarrow \alpha$ in n steps. Look at the last step.

$$L(G) \subseteq \{w \mid \#_a(w) = \#_b(w)\}$$

Thm $L(G) \subseteq \{w \mid \#_a(w) = \#_b(w)\}$. We prove something stronger.

Let $L(G)' = \{\alpha \in \{S, a, b\}^* : S \Rightarrow \alpha\}$ (Note that we allow S in α .)

Thm $L(G)' \subseteq \{ w \mid \#_a(w) = \#_b(w) \}.$

This is by induction on numb of steps in the derivation from S.

Base Case In one step can only get $\alpha \in \{aSb, bSa, SS, e\}$.

Ind Hyp If $S \Rightarrow \beta$ in n-1 steps then $\#_a(\beta) = \#_b(\beta)$.

Ind Step Assume $S \Rightarrow \alpha$ in n steps. Look at the last step.

Case 1 $S \Rightarrow \alpha' S \alpha'' \rightarrow \alpha' a S b \alpha$. By IH $\#_a(\alpha' S \alpha'') = \#_b(\alpha' S \alpha'')$.

 $\#_{a}(\alpha' \mathsf{a} \mathsf{Sb} \alpha'') = \#_{b}(\alpha' \mathsf{S} \alpha'') + 1.$

 $\#_b(\alpha' \mathsf{aSb}\alpha'') = \#_b(\alpha' \mathsf{S}\alpha'') + 1.$

$$L(G) \subseteq \{w \mid \#_a(w) = \#_b(w)\}$$

Thm $L(G) \subseteq \{w \mid \#_a(w) = \#_b(w)\}$. We prove something stronger.

Let $L(G)' = \{\alpha \in \{S, a, b\}^* : S \Rightarrow \alpha\}$ (Note that we allow S in α .)

Thm $L(G)' \subseteq \{w \mid \#_a(w) = \#_b(w)\}.$

This is by induction on numb of steps in the derivation from S.

Base Case In one step can only get $\alpha \in \{aSb, bSa, SS, e\}$.

Ind Hyp If $S \Rightarrow \beta$ in n-1 steps then $\#_a(\beta) = \#_b(\beta)$.

Ind Step Assume $S \Rightarrow \alpha$ in n steps. Look at the last step.

Case 1 $S \Rightarrow \alpha' S \alpha'' \rightarrow \alpha' a S b \alpha$. By IH $\#_a(\alpha' S \alpha'') = \#_b(\alpha' S \alpha'')$.

$$\#_{\mathsf{a}}(\alpha'\mathsf{a}\mathsf{S}\mathsf{b}\alpha'') = \#_{\mathsf{b}}(\alpha'\mathsf{S}\alpha'') + 1.$$

$$\#_b(\alpha' \mathsf{aSb}\alpha'') = \#_b(\alpha' \mathsf{S}\alpha'') + 1.$$

Hence

$$\#_a(\alpha' aSb\alpha'') = \#_b(\alpha' aSb\alpha'')$$

$$L(G) \subseteq \{ w \mid \#_a(w) = \#_b(w) \}$$

Let G be the CFG

 $S o aSb \mid bSa \mid SS \mid e$ Thm $L(G) \subseteq \{w \mid \#_a(w) = \#_b(w)\}$. We prove something

stronger. Let $L(G)' = \{\alpha \in \{S, a, b\}^* : S \Rightarrow \alpha\}$ (Note that we allow S in α .)

Thm $L(G)' \subseteq \{ w \mid \#_a(w) = \#_b(w) \}.$

This is by induction on numb of steps in the derivation from S.

Base Case In one step can only get $\alpha \in \{aSb, bSa, SS, e\}$.

Ind Hyp If $S \Rightarrow \beta$ in n-1 steps then $\#_a(\beta) = \#_b(\beta)$.

Ind Step Assume $S \Rightarrow \alpha$ in n steps. Look at the last step.

Case 1 $S \Rightarrow \alpha' S \alpha'' \rightarrow \alpha' a S b \alpha$. By IH $\#_a(\alpha' S \alpha'') = \#_b(\alpha' S \alpha'')$.

$$\#_{a}(\alpha' a Sb\alpha'') = \#_{b}(\alpha' S\alpha'') + 1.$$

$$\#_b(\alpha' \mathsf{aSb}\alpha'') = \#_b(\alpha' \mathsf{S}\alpha'') + 1.$$

Hence

$$\#_{a}(\alpha' aSb\alpha'') = \#_{b}(\alpha' aSb\alpha'')$$

Case 2 Other cases for last step similar.

$$\{w \mid \#_a(w) = \#_b(w)\} \subseteq L(G)$$

Let G be the CFG $S o aSb \mid bSa \mid SS \mid e$

$$\{w \mid \#_a(w) = \#_b(w)\} \subseteq L(G)$$

Let G be the CFG $S \rightarrow aSb \mid bSa \mid SS \mid e$ Thm $\{w \mid \#_a(w) = \#_b(w)\} \subseteq L(G)$. This is not obvious!

$$\{w \mid \#_a(w) = \#_b(w)\} \subseteq L(G)$$

Thm
$$\{w \mid \#_a(w) = \#_b(w)\} \subseteq L(G)$$
.

This is not obvious!

We must show that **every** w with $\#_a(w) = \#_b(w)$ can be generated.

$$\{w \mid \#_a(w) = \#_b(w)\} \subseteq L(G)$$

Thm
$$\{w \mid \#_a(w) = \#_b(w)\} \subseteq L(G)$$
.

This is not obvious!

We must show that **every** w with $\#_a(w) = \#_b(w)$ can be generated.

DISCUSS!

$$\{w \mid \#_a(w) = \#_b(w)\} \subseteq L(G)$$

Thm
$$\{w \mid \#_a(w) = \#_b(w)\} \subseteq L(G)$$
.

This is not obvious!

We must show that **every** w with $\#_a(w) = \#_b(w)$ can be generated.

DISCUSS!

We use induction on |w|.

$$\{w \mid \#_a(w) = \#_b(w)\} \subseteq L(G)$$

Thm
$$\{w \mid \#_a(w) = \#_b(w)\} \subseteq L(G)$$
.

This is not obvious!

We must show that **every** w with $\#_a(w) = \#_b(w)$ can be generated.

DISCUSS!

We use induction on |w|.

Base Case |w| = 0. So w = e. Can be generated by $S \rightarrow e$.

$$\{w \mid \#_a(w) = \#_b(w)\} \subseteq L(G)$$

Thm
$$\{w \mid \#_a(w) = \#_b(w)\} \subseteq L(G)$$
.

This is not obvious!

We must show that **every** w with $\#_a(w) = \#_b(w)$ can be generated.

DISCUSS!

We use induction on |w|.

Base Case |w| = 0. So w = e. Can be generated by $S \to e$.

Ind Hyp If $|w'| \le n-1$ and $\#_a(w') = \#_b(w')$ then $w' \in L(G)$.

$$\{w \mid \#_a(w) = \#_b(w)\} \subseteq L(G)$$

Thm
$$\{w \mid \#_a(w) = \#_b(w)\} \subseteq L(G)$$
.

This is not obvious!

We must show that **every** w with $\#_a(w) = \#_b(w)$ can be generated.

DISCUSS!

We use induction on |w|.

Base Case |w| = 0. So w = e. Can be generated by $S \to e$.

Ind Hyp If $|w'| \le n-1$ and $\#_a(w') = \#_b(w')$ then $w' \in L(G)$.

Ind Step Let w be such that $\#_a(w) = \#_b(w)$.

$$\{w \mid \#_a(w) = \#_b(w)\} \subseteq L(G)$$

Thm $\{w \mid \#_a(w) = \#_b(w)\} \subseteq L(G)$.

This is not obvious!

We must show that every w with $\#_a(w) = \#_b(w)$ can be generated.

DISCUSS!

We use induction on |w|.

Base Case |w| = 0. So w = e. Can be generated by $S \to e$.

Ind Hyp If $|w'| \le n-1$ and $\#_a(w') = \#_b(w')$ then $w' \in L(G)$.

Ind Step Let w be such that $\#_a(w) = \#_b(w)$.

Case 1 w = aw'b. Then $w' \in L(G)$. By IH $S \Rightarrow w'$.

 $S \rightarrow aSb \Rightarrow aw'b$.

$$\{w \mid \#_a(w) = \#_b(w)\} \subseteq L(G)$$

Thm
$$\{w \mid \#_a(w) = \#_b(w)\} \subseteq L(G)$$
.

This is not obvious!

We must show that **every** w with $\#_a(w) = \#_b(w)$ can be generated.

DISCUSS!

We use induction on |w|.

Base Case |w| = 0. So w = e. Can be generated by $S \rightarrow e$.

Ind Hyp If $|w'| \le n-1$ and $\#_a(w') = \#_b(w')$ then $w' \in L(G)$.

Ind Step Let w be such that $\#_a(w) = \#_b(w)$.

Case 1 w = aw'b. Then $w' \in L(G)$. By IH $S \Rightarrow w'$.

 $S \rightarrow aSb \Rightarrow aw'b$.

Case 2 w = bw'a. Similar.

$$\{w \mid \#_a(w) = \#_b(w)\} \subseteq L(G)$$

Thm $\{w \mid \#_a(w) = \#_b(w)\} \subseteq L(G)$.

This is not obvious!

We must show that **every** w with $\#_a(w) = \#_b(w)$ can be generated.

DISCUSS!

We use induction on |w|.

Base Case |w| = 0. So w = e. Can be generated by $S \to e$.

Ind Hyp If $|w'| \le n-1$ and $\#_a(w') = \#_b(w')$ then $w' \in L(G)$.

Ind Step Let w be such that $\#_a(w) = \#_b(w)$.

Case 1 w = aw'b. Then $w' \in L(G)$. By IH $S \Rightarrow w'$.

 $S \rightarrow aSb \Rightarrow aw'b$.

Case 2 w = bw'a. Similar.

Case 3 w = aw'a. This is first NON-OBVIOUS part!

$$\{w \mid \#_a(w) = \#_b(w)\} \subseteq L(G)$$

Thm
$$\{w \mid \#_a(w) = \#_b(w)\} \subseteq L(G)$$
.

This is not obvious!

We must show that **every** w with $\#_a(w) = \#_b(w)$ can be generated.

DISCUSS!

We use induction on |w|.

Base Case |w| = 0. So w = e. Can be generated by $S \to e$.

Ind Hyp If $|w'| \le n-1$ and $\#_a(w') = \#_b(w')$ then $w' \in L(G)$.

Ind Step Let w be such that $\#_a(w) = \#_b(w)$.

Case 1 w = aw'b. Then $w' \in L(G)$. By IH $S \Rightarrow w'$.

 $S \rightarrow aSb \Rightarrow aw'b$.

Case 2 w = bw'a. Similar.

Case 3 w = aw'a. This is first NON-OBVIOUS part! Next Slide.

$$\{w \mid \#_a(w) = \#_b(w)\} \subseteq L(G)$$

$$\{w \mid \#_a(w) = \#_b(w)\} \subseteq L(G)$$

Case 3 w = aw'a. Let $w = a\sigma_2 \cdots \sigma_{n-1}a$. Look at prefixes of w:

$$\{w \mid \#_a(w) = \#_b(w)\} \subseteq L(G)$$

Let G be the CFG $S oup aSb \mid bSa \mid SS \mid e$ Case 3 W = aw'a. Let $W = a\sigma_2 \cdots \sigma_{n-1}a$. Look at prefixes of W:

a: $\#_a(a) > \#_b(a)$

$$\{w \mid \#_a(w) = \#_b(w)\} \subseteq L(G)$$

Let
$$G$$
 be the CFG $S oup aSb \mid bSa \mid SS \mid e$ Case $S oup aSb \mid bSa \mid SS \mid e$ Case $S oup aSb \mid bSa \mid SS \mid e$ Let $S oup aSb \mid bSa \mid SS \mid e$ Dro all $S oup aSb \mid bSa \mid SSb \mid e$ For all $S oup aSb \mid SBb \mid$

$$\{w \mid \#_a(w) = \#_b(w)\} \subseteq L(G)$$

 $\#_a(a\sigma_2\cdots\sigma_{n-1}) = \frac{n}{2} - 1$ $\#_b(a\sigma_2\cdots\sigma_{n-1}) = \frac{n}{2}$

Let
$$G$$
 be the CFG $S oup aSb \mid bSa \mid SS \mid e$ Case $3 \ w = aw'a$. Let $w = a\sigma_2 \cdots \sigma_{n-1}a$. Look at prefixes of w : a : $\#_a(a) > \#_b(a)$ For all $2 \le i \le n-1$, EITHER $\#_a(a\sigma_2 \cdots \sigma_i) = \#_a(a\sigma_2 \cdots \sigma_{i-1}) + 1$. OR $\#_b(a\sigma_2 \cdots \sigma_i) = \#_b(a\sigma_2 \cdots \sigma_{i-1}) + 1$. But NOT both.

$$\{w \mid \#_a(w) = \#_b(w)\} \subseteq L(G)$$

Let
$$G$$
 be the CFG $S oup aSb \mid bSa \mid SS \mid e$ Case $3 \ w = aw'a$. Let $w = a\sigma_2 \cdots \sigma_{n-1}a$. Look at prefixes of w : a : $\#_a(a) > \#_b(a)$ For all $2 \le i \le n-1$, EITHER $\#_a(a\sigma_2 \cdots \sigma_i) = \#_a(a\sigma_2 \cdots \sigma_{i-1}) + 1$. OR $\#_b(a\sigma_2 \cdots \sigma_i) = \#_b(a\sigma_2 \cdots \sigma_{i-1}) + 1$. But NOT both.

$$\#_a(a\sigma_2\cdots\sigma_{n-1}) = \frac{n}{2} - 1$$

$$\#_b(a\sigma_2\cdots\sigma_{n-1}) = \frac{n}{2}$$

Hence

$$\{w \mid \#_a(w) = \#_b(w)\} \subseteq L(G)$$

Let
$$G$$
 be the CFG $S \rightarrow aSb \mid bSa \mid SS \mid e$

Case 3 w = aw'a. Let $w = a\sigma_2 \cdots \sigma_{n-1}a$. Look at prefixes of w: a: $\#_a(a) > \#_b(a)$

For all
$$2 < i < n-1$$
, EITHER

$$\#_a(a\sigma_2\cdots\sigma_i)=\#_a(a\sigma_2\cdots\sigma_{i-1})+1.$$

OR

$$\#_b(a\sigma_2\cdots\sigma_i)=\#_b(a\sigma_2\cdots\sigma_{i-1})+1.$$

But NOT both.

$$#_a(a\sigma_2\cdots\sigma_{n-1}) = \frac{n}{2} - 1$$

$$#_b(a\sigma_2\cdots\sigma_{n-1}) = \frac{n}{2}$$

Hence

$$\#_a(a\sigma_2\cdots\sigma_{n-1})<\#_b(a\sigma_2\cdots\sigma_{n-1})$$

1) a: $\#_a(a) > \#_b(a)$

1) $a: \#_a(a) > \#_b(a)$ 2) For all $2 \le i \le n - 1$, EITHER $\#_a(a\sigma_2 \cdots \sigma_i) = \#_a(a\sigma_2 \cdots \sigma_{i-1}) + 1$. OR $\#_b(a\sigma_2 \cdots \sigma_i) = \#_a(a\sigma_2 \cdots \sigma_{i-1}) + 1$.

1) $a: \#_a(a) > \#_b(a)$ 2) For all $2 \le i \le n - 1$, EITHER $\#_a(a\sigma_2 \cdots \sigma_i) = \#_a(a\sigma_2 \cdots \sigma_{i-1}) + 1$. OR $\#_b(a\sigma_2 \cdots \sigma_i) = \#_a(a\sigma_2 \cdots \sigma_{i-1}) + 1$. 3) $\#_a(a\sigma_2 \cdots \sigma_{n-1}) < \#_b(a\sigma_2 \cdots \sigma_{n-1})$ Hence there exists $2 \le i \le n - 1$ $\#_a(a\sigma_2 \cdots \sigma_i) = \#_b(a\sigma_2 \cdots \sigma_{i-1})$.

```
1) a: \#_a(a) > \#_b(a)
2) For all 2 < i < n-1, EITHER
\#_a(a\sigma_2\cdots\sigma_i)=\#_a(a\sigma_2\cdots\sigma_{i-1})+1.
OR
\#_b(a\sigma_2\cdots\sigma_i)=\#_a(a\sigma_2\cdots\sigma_{i-1})+1.
3) \#_a(a\sigma_2\cdots\sigma_{n-1}) < \#_b(a\sigma_2\cdots\sigma_{n-1})
Hence there exists 2 < i < n-1
\#_a(a\sigma_2\cdots\sigma_i)=\#_b(a\sigma_2\cdots\sigma_{i-1}).
So w = w'w'' where w, w' \in L(G). Since |w'| < |w| and
|w''| < |w|, by IH
S \Rightarrow w' and S \Rightarrow w''.
```

Recap

```
1) a: \#_a(a) > \#_b(a)
2) For all 2 < i < n-1, EITHER
\#_a(a\sigma_2\cdots\sigma_i)=\#_a(a\sigma_2\cdots\sigma_{i-1})+1.
OR
\#_b(a\sigma_2\cdots\sigma_i)=\#_a(a\sigma_2\cdots\sigma_{i-1})+1.
3) \#_a(a\sigma_2\cdots\sigma_{n-1}) < \#_b(a\sigma_2\cdots\sigma_{n-1})
Hence there exists 2 < i < n-1
\#_a(a\sigma_2\cdots\sigma_i)=\#_b(a\sigma_2\cdots\sigma_{i-1}).
So w = w'w'' where w, w' \in L(G). Since |w'| < |w| and
|w''| < |w|, by IH
S \Rightarrow w' and S \Rightarrow w''.
So
S \rightarrow SS \Rightarrow w'w'' = w
```

1) $\{a^nb^nc^n:n\in\mathbb{N}\}$ is NOT a CFL.

- 1) $\{a^nb^nc^n: n \in \mathbb{N}\}$ is NOT a CFL.
- 2) $\{a^{n^2}: n \in \mathbb{N}\}$ is NOT a CFL.

- 1) $\{a^nb^nc^n:n\in\mathbb{N}\}$ is NOT a CFL.
- 2) $\{a^{n^2}: n \in \mathbb{N}\}$ is NOT a CFL.
- 3) If $L \subseteq a^*$ and L is not regular than L is not a CFL.

- 1) $\{a^nb^nc^n:n\in\mathbb{N}\}$ is NOT a CFL.
- 2) $\{a^{n^2}: n \in \mathbb{N}\}$ is NOT a CFL.
- 3) If $L \subseteq a^*$ and L is not regular than L is not a CFL.

We will not be proving Langs NOT CFL.

CLOSURE PROPERTIES AND REG CFL

Closure Properties: PROVE or DISPROVE

If L_1, L_2 are Context Free Languages then

- 1. IS $L_1 \cup L_2$ is a context free Lang?
- 2. IS $L_1 \cap L_2$ is a context free Lang?
- 3. IS $L_1 \cdot L_2$ is a context free Lang?
- 4. IS $\overline{L_1}$ is a context free Lang?
- 5. IS L_1^* is a context free Lang?

DISCUSS

 L_1 is CFL via CFG (N_1, Σ, R_1, S_1) . L_2 is CFL via CFG (N_2, Σ, R_2, S_2) .

 L_1 is CFL via CFG (N_1, Σ, R_1, S_1) . L_2 is CFL via CFG (N_2, Σ, R_2, S_2) . The following CFG generates $L_1 \cup L_2$. $L_1 \cup L_2$ is CFL via CFG (N, Σ, R, S) where

```
L_1 is CFL via CFG (N_1, \Sigma, R_1, S_1).

L_2 is CFL via CFG (N_2, \Sigma, R_2, S_2).

The following CFG generates L_1 \cup L_2.

L_1 \cup L_2 is CFL via CFG (N, \Sigma, R, S) where N = N_1 \cup N_2 \cup \{S\}
```

```
L_1 is CFL via CFG (N_1, \Sigma, R_1, S_1).

L_2 is CFL via CFG (N_2, \Sigma, R_2, S_2).

The following CFG generates L_1 \cup L_2.

L_1 \cup L_2 is CFL via CFG (N, \Sigma, R, S) where N = N_1 \cup N_2 \cup \{S\}

S is start state.
```

 L_1 is CFL via CFG (N_1, Σ, R_1, S_1) . L_2 is CFL via CFG (N_2, Σ, R_2, S_2) . The following CFG generates $L_1 \cup L_2$. $L_1 \cup L_2$ is CFL via CFG (N, Σ, R, S) where $N = N_1 \cup N_2 \cup \{S\}$ S is start state. $R = R_1 \cup R_2 \cup \{S \rightarrow S_1 \mid S_2\}$

 L_1 is CFL via CFG (N_1, Σ, R_1, S_1) . L_2 is CFL via CFG (N_2, Σ, R_2, S_2) . The following CFG generates $L_1 \cup L_2$. $L_1 \cup L_2$ is CFL via CFG (N, Σ, R, S) where $N = N_1 \cup N_2 \cup \{S\}$ S is start state. $R = R_1 \cup R_2 \cup \{S \rightarrow S_1 \mid S_2\}$

Note We assume $N_1 \cap N_2 = \emptyset$.

If L_1 and L_2 are regular then $L_1 \cup L_2$ is regular.

This is true for 3 languages or 4 languages or 98 languages.

If L_1 and L_2 are regular then $L_1 \cup L_2$ is regular.

This is true for 3 languages or 4 languages or 98 languages.

But if L_1, L_2, L_3, \cdots is an **infinite** set of regular languages, is $L_1 \cup L_2 \cup \dots$ regular?

If L_1 and L_2 are regular then $L_1 \cup L_2$ is regular.

This is true for 3 languages or 4 languages or 98 languages.

But if L_1, L_2, L_3, \cdots is an **infinite** set of regular languages, is $L_1 \cup L_2 \cup ...$ regular?

No, because:

- ▶ $L_1 = \{ab\}$ is regular.
- $ightharpoonup L_k = \{a^k b^k\}$ is regular.
- ▶ $L_1 \cup L_2 \cup \cdots = \{a^n b^n : n \in \mathbb{N}\}$ is not regular.

If L_1 and L_2 are regular then $L_1 \cup L_2$ is regular.

This is true for 3 languages or 4 languages or 98 languages.

But if L_1, L_2, L_3, \cdots is an **infinite** set of regular languages, is $L_1 \cup L_2 \cup ...$ regular?

No, because:

- ▶ $L_1 = \{ab\}$ is regular.
- $ightharpoonup L_k = \{a^k b^k\}$ is regular.
- ▶ $L_1 \cup L_2 \cup \cdots = \{a^n b^n : n \in \mathbb{N}\}$ is not regular.

What about for CFLs?

- $ightharpoonup L_1 = \{abc\}$ is a CFL.
- $ightharpoonup L_k = \{a^k b^k c^k\}$ is a CFL.
- ▶ We will see later that $\bigcup_{i=1}^{\infty} L_i = \{a^n b^n c^n : n \in \mathbb{N}\}$ is not CFL.

NOT TRUE: $a^nb^nc^* \cap a^*b^nc^n = a^nb^nc^n$.

 L_1 is CFL via CFG (N_1, Σ, R_1, S_1) . L_2 is CFL via CFG (N_2, Σ, R_2, S_2) .

 $\begin{array}{l} \textit{L}_1 \text{ is CFL via CFG } (\textit{N}_1, \Sigma, \textit{R}_1, \textit{S}_1). \\ \textit{L}_2 \text{ is CFL via CFG } (\textit{N}_2, \Sigma, \textit{R}_2, \textit{S}_2). \\ \\ \text{The following CFG generates } \textit{L}_1 \cdot \textit{L}_2. \\ \textit{L}_1 \cdot \textit{L}_2 \text{ is CFL via CFG } (\textit{N}, \Sigma, \textit{R}, \textit{S}) \text{ where} \end{array}$

 L_1 is CFL via CFG (N_1, Σ, R_1, S_1) . L_2 is CFL via CFG (N_2, Σ, R_2, S_2) . The following CFG generates $L_1 \cdot L_2$. $L_1 \cdot L_2$ is CFL via CFG (N, Σ, R, S) where $N = N_1 \cup N_2$

 L_1 is CFL via CFG (N_1, Σ, R_1, S_1) . L_2 is CFL via CFG (N_2, Σ, R_2, S_2) . The following CFG generates $L_1 \cdot L_2$. $L_1 \cdot L_2$ is CFL via CFG (N, Σ, R, S) where $N = N_1 \cup N_2$ S is the start state.

 L_1 is CFL via CFG (N_1, Σ, R_1, S_1) .

 L_2 is CFL via CFG (N_2, Σ, R_2, S_2) .

The following CFG generates $L_1 \cdot L_2$.

 $L_1 \cdot L_2$ is CFL via CFG (N, Σ, R, S) where

 $N = N_1 \cup N_2$

S is the start state.

$$R = R_1 \cup R_2 \cup \{S \rightarrow S_1 \cdot S_2\}.$$

 L_1 is CFL via CFG (N_1, Σ, R_1, S_1) .

 L_2 is CFL via CFG (N_2, Σ, R_2, S_2) .

The following CFG generates $L_1 \cdot L_2$.

 $L_1 \cdot L_2$ is CFL via CFG (N, Σ, R, S) where

 $N = N_1 \cup N_2$

S is the start state.

$$R = R_1 \cup R_2 \cup \{S \rightarrow S_1 \cdot S_2\}.$$

Note We assume $N_1 \cap N_2 = \emptyset$.

$L \ \mathsf{CFL} \to \overline{L} \ \mathsf{CFL}$

FALSE. Let

$$L = \overline{\{a^n b^n c^n : n \in \mathbb{N}\}}$$

$L \ \mathsf{CFL} \to \overline{L} \ \mathsf{CFL}$

FALSE.

Let

$$L = \overline{\{a^n b^n c^n : n \in \mathbb{N}\}}$$

This is a CFL. This will be a HW.

L is CFL via CFG (N, Σ, R, S) .

L is CFL via CFG (N, Σ, R, S) . Here is a CFL for L^* : (N', Σ, R', S') where

L is CFL via CFG (N, Σ, R, S) . Here is a CFL for L^* : (N', Σ, R', S') where S' is new start nonterminal.

L is CFL via CFG (N, Σ, R, S) . Here is a CFL for L^* : (N', Σ, R', S') where S' is new start nonterminal. $N' = N \cup \{S\}$.

L is CFL via CFG (N, Σ, R, S) . Here is a CFL for L^* : (N', Σ, R', S') where S' is new start nonterminal. $N' = N \cup \{S\}$. R' has R and also

L is CFL via CFG (N, Σ, R, S) . Here is a CFL for L^* : (N', Σ, R', S') where S' is new start nonterminal. $N' = N \cup \{S\}$. R' has R and also $S' \rightarrow e$

L is CFL via CFG (N, Σ, R, S) . Here is a CFL for L^* : (N', Σ, R', S') where S' is new start nonterminal. $N' = N \cup \{S\}$. R' has R and also $S' \rightarrow e$ $S' \rightarrow S'S$

REG contained in CFL

Thm If L is regular then L is CFL. DISCUSS

REG contained in CFL

For every **regex** α , $L(\alpha)$ is a CFL.

REG contained in CFL

For every **regex** α , $L(\alpha)$ is a CFL.

Prove by ind on the length of α .

For every **regex** α , $L(\alpha)$ is a CFL.

Prove by ind on the length of α .

Base Case $|\alpha|=1$ then α is σ or e. Both $\{sigma\}$ and $\{e\}$ are CFL's.

For every **regex** α , $L(\alpha)$ is a CFL.

Prove by ind on the length of α .

Base Case $|\alpha|=1$ then α is σ or e. Both $\{sigma\}$ and $\{e\}$ are CFL's.

Ind Hyp For all regex β with $|\beta| < n$ there exists CFG G such that $L(\beta) = L(G)$.

For every **regex** α , $L(\alpha)$ is a CFL.

Prove by ind on the length of α .

Base Case $|\alpha|=1$ then α is σ or e. Both $\{sigma\}$ and $\{e\}$ are CFL's.

Ind Hyp For all regex β with $|\beta| < n$ there exists CFG G such that $L(\beta) = L(G)$.

Ind Step $|\alpha| = n$.

For every **regex** α , $L(\alpha)$ is a CFL.

Prove by ind on the length of α .

Base Case $|\alpha|=1$ then α is σ or e. Both $\{sigma\}$ and $\{e\}$ are CFL's.

Ind Hyp For all regex β with $|\beta| < n$ there exists CFG G such that $L(\beta) = L(G)$.

Ind Step $|\alpha| = n$.

Case 1 $\alpha = \beta_1 \cup \beta_2$. By IH $L(\beta_1)$ and $L(\beta_2)$ are CFL's. By closure under \cup , $L(\alpha)$ is CFL.

For every **regex** α , $L(\alpha)$ is a CFL.

Prove by ind on the length of α .

Base Case $|\alpha|=1$ then α is σ or e. Both $\{sigma\}$ and $\{e\}$ are CFL's.

Ind Hyp For all regex β with $|\beta| < n$ there exists CFG G such that $L(\beta) = L(G)$.

Ind Step $|\alpha| = n$.

Case 1 $\alpha = \beta_1 \cup \beta_2$. By IH $L(\beta_1)$ and $L(\beta_2)$ are CFL's. By closure under \cup , $L(\alpha)$ is CFL.

Case 2 $\alpha = \beta_1 \cdot \beta_2$. By IH $L(\beta_1)$ and $L(\beta_2)$ are CFL's. By closure under \cdot , $L(\alpha)$ is CFL.

For every **regex** α , $L(\alpha)$ is a CFL.

Prove by ind on the length of α .

Base Case $|\alpha|=1$ then α is σ or e. Both $\{sigma\}$ and $\{e\}$ are CFL's.

Ind Hyp For all regex β with $|\beta| < n$ there exists CFG G such that $L(\beta) = L(G)$.

Ind Step $|\alpha| = n$.

Case 1 $\alpha = \beta_1 \cup \beta_2$. By IH $L(\beta_1)$ and $L(\beta_2)$ are CFL's. By closure under \cup , $L(\alpha)$ is CFL.

Case 2 $\alpha = \beta_1 \cdot \beta_2$. By IH $L(\beta_1)$ and $L(\beta_2)$ are CFL's. By closure under \cdot , $L(\alpha)$ is CFL.

Case 3 $\alpha = \beta^*$. By IH $L(\beta)$ is CFL. By closure under *, $L(\alpha)$ is CFL.

Examples of CFL's and Size of CFG's

How big is a CFL for the language $\{aaaaaaaaa\}$ (there are 8 a's).

How big is a CFL for the language $\{aaaaaaaa\}$ (there are 8 a's). We could say the size is 1:

S o aaaaaaaa

How big is a CFL for the language $\{aaaaaaaa\}$ (there are 8 a's). We could say the size is 1:

This does not seem quite right.

How big is a CFL for the language $\{aaaaaaaa\}$ (there are 8 a's). We could say the size is 1:

This does not seem quite right.

Next slide has a standard form for CFL's that make size make sense.

Def CFG *G* is in **Chomsky Normal Form** if the rules are all of the following form:

Def CFG *G* is in **Chomsky Normal Form** if the rules are all of the following form:

1) $A \rightarrow BC$ where $A, B, C \in N$ (nonterminals).

Def CFG *G* is in **Chomsky Normal Form** if the rules are all of the following form:

- 1) $A \rightarrow BC$ where $A, B, C \in N$ (nonterminals).
- 2) $A \rightarrow \sigma$ (where $A \in N$ and $\sigma \in \Sigma$).

Def CFG *G* is in **Chomsky Normal Form** if the rules are all of the following form:

- 1) $A \rightarrow BC$ where $A, B, C \in N$ (nonterminals).
- 2) $A \rightarrow \sigma$ (where $A \in N$ and $\sigma \in \Sigma$).
- 3) $S \rightarrow e$ (where S is the start state).

Recall the CFG:

S o aaaaaaaa

Recall the CFG:

S o aaaaaaaa

DISCUSS TO FIND A CHOMSKY NORMAL FORM CFG FOR {aaaaaaaa}.

Recall the CFG: $S \rightarrow aaaaaaaa$

Recall the CFG:

S
ightarrow aaaaaaaa

Chomsky Normal form CFG that generates same lang:

 $S \rightarrow AA$

Recall the CFG:

S
ightarrow aaaaaaaa

Chomsky Normal form CFG that generates same lang:

 $S \rightarrow AA$

 $A \rightarrow BB$

Recall the CFG:

S o aaaaaaaa

Chomsky Normal form CFG that generates same lang:

 $S \rightarrow AA$

 $A \rightarrow BB$

 $B \rightarrow CC$

Recall the CFG:

S o aaaaaaaa

Chomsky Normal form CFG that generates same lang:

 $S \rightarrow AA$

 $A \rightarrow BB$

 $B \rightarrow CC$

C
ightarrow a

Recall the CFG:

S o aaaaaaaa

Chomsky Normal form CFG that generates same lang:

 $S \rightarrow AA$

 $A \rightarrow BB$

 $B \rightarrow CC$

 $C \rightarrow a$

We measure the size of a Chomsky Normal Form CFG by the number of rules.

Recall the CFG:

S o aaaaaaaa

Chomsky Normal form CFG that generates same lang:

 $S \rightarrow AA$

 $A \rightarrow BB$

 $B \rightarrow CC$

 $C \rightarrow a$

We measure the size of a Chomsky Normal Form CFG by the number of rules.

So {aaaaaaaa} has a Chomsky Normal Form CFG of size 4.

We say that $\{a^8\}$ has a CNF CFG of size 4.

We say that $\{a^8\}$ has a CNF CFG of size 4. What about $\{a^{16}\}$? Vote

```
We say that \{a^8\} has a CNF CFG of size 4. What about \{a^{16}\}? Vote 1) Size 8 2) Size 5
```

We say that $\{a^8\}$ has a CNF CFG of size 4.

What about $\{a^{16}\}$? Vote

- 1) Size 8
- 2) Size 5

The answer is 5. Next slide.

 $S \rightarrow AA$

 $S \rightarrow AA$ $A \rightarrow BB$

 $S \rightarrow AA$

 $A \rightarrow BB$

 $B \to CC$

 $S \rightarrow AA$

 $A \rightarrow BB$

 $B \rightarrow CC$

 $C \to DD$

 $S \rightarrow AA$

 $A \rightarrow BB$

 $B \rightarrow CC$

 $C \rightarrow DD$

D o a

 $S \rightarrow AA$

 $A \rightarrow BB$

 $B \rightarrow CC$

 $C \rightarrow DD$

 $D \rightarrow a$

What to do if n is not a power of 2. HW.

$$L = \{a\}^n$$

Upshot

For $L_n = \{a^n\}$:

- ▶ Any DFA or NFA that recognizes L_n has $n + \Omega(1)$ states.
- ▶ There is a CFG that generates L_n with $O(\log n)$ rules.

Our Old Friend
$$L = \{a, b\}^* a \{a, b\}^n$$

1) We showed that L requires a 2^{n+1} size DFA.

Our Old Friend $L = \{a, b\}^* a \{a, b\}^n$

- 1) We showed that L requires a 2^{n+1} size DFA.
- 2) We have an NFA of size n + 2. There is no NFA of size n since then there would be a DFA of size $2^n < 2^{n+1}$.

Our Old Friend $L = \{a, b\}^* a \{a, b\}^n$

- 1) We showed that L requires a 2^{n+1} size DFA.
- 2) We have an NFA of size n + 2. There is no NFA of size n since then there would be a DFA of size $2^n < 2^{n+1}$.
- 3) DISCUSS for getting a CFG of size $\ll n$.

$$L = L_1 \cdot L_2$$
 where

```
L=L_1\cdot L_2 where L_1=\{a,b\}^*a. Has 5-rule Chomsky Normal Form CFG: S\to AS\mid BS\mid a A\to a B\to b
```

```
L = L_1 \cdot L_2 where
L_1 = \{a, b\}^*a. Has 5-rule Chomsky Normal Form CFG:
S \rightarrow AS \mid BS \mid a
A \rightarrow a
B \rightarrow b
L_2 = \{a, b\}^n. A \lg(n) + 3 rule Chomsky Normal Form CFG.
S \rightarrow S_1 S_1
S_1 \rightarrow S_2 S_2
S_{\lg(n)+1} \to S_{\lg(n)} S_{\lg(n)}
S_{\lg(n)} \rightarrow a \mid b
Note We are assuming n is a power of 2.
```

$$L = \{a, b\}^* a \{a, b\}^n$$

$$L = \{a, b\}^* a \{a, b\}^n$$

1) DFA of size $\Theta(2^n)$.

$$L = \{a, b\}^* a \{a, b\}^n$$

- 1) DFA of size $\Theta(2^n)$.
- 2) NFA of size $n + \Theta(1)$.

$$L = \{a, b\}^* a \{a, b\}^n$$

- 1) DFA of size $\Theta(2^n)$.
- 2) NFA of size $n + \Theta(1)$.
- 3) CFG of size $\Theta(\lg(n))$.

Any CFG can be Put Into Chomsky Normal Form

Recall the CFG for $\{a^mb^n: m>n\}$. We put it into Chomsky Normal Form.

- 1) $S \rightarrow AT$
- 2) $T \rightarrow aTb$
- 3) $T \rightarrow e$
- 4) $A \rightarrow Aa$
- 5) $A \rightarrow a$

Any CFG can be Put Into Chomsky Normal Form

Recall the CFG for $\{a^mb^n: m>n\}$. We put it into Chomsky Normal Form.

- 1) $S \rightarrow AT$
- 2) $T \rightarrow aTb$
- 3) $T \rightarrow e$
- 4) $A \rightarrow Aa$
- 5) $A \rightarrow a$

New nonterminals [aT], [b], [a]. Replace $T \rightarrow aTb$ with:

$$T \rightarrow [aT][b]$$

 $[aT] \rightarrow [a]T$
 $[b] \rightarrow b$.

Any CFG can be Put Into Chomsky Normal Form

Recall the CFG for $\{a^mb^n: m>n\}$. We put it into Chomsky Normal Form.

- 1) $S \rightarrow AT$
- 2) $T \rightarrow aTb$
- 3) $T \rightarrow e$
- 4) $A \rightarrow Aa$
- 5) $A \rightarrow a$

New nonterminals [aT], [b], [a]. Replace $T \rightarrow aTb$ with:

$$T \rightarrow [aT][b]$$

 $[aT] \rightarrow [a]T$
 $[b] \rightarrow b$.
 $[a] \rightarrow a$

Repeat the process with the other rules.

1) There is a pumping theorem for CFL's but we won't be doing it.

- 1) There is a pumping theorem for CFL's but we won't be doing it.
- 2) If L_1 is a CFL and L_2 is regular then $L_1 \cap L_2$ is a CFL.

- 1) There is a pumping theorem for CFL's but we won't be doing it.
- 2) If L_1 is a CFL and L_2 is regular then $L_1 \cap L_2$ is a CFL.
- 3) Recall: DFA's are Recognizers, Regex are Generators.
 CFG's are Generators. There is a Recognizer equivalent to it:
 PDAs

- 1) There is a pumping theorem for CFL's but we won't be doing it.
- 2) If L_1 is a CFL and L_2 is regular then $L_1 \cap L_2$ is a CFL.
- 3) Recall: DFA's are Recognizers, Regex are Generators.

CFG's are **Generators**. There is a **Recognizer** equivalent to it:

PDAs

PDA does not stand for **Public Display of Affection**

- 1) There is a pumping theorem for CFL's but we won't be doing it.
- 2) If L_1 is a CFL and L_2 is regular then $L_1 \cap L_2$ is a CFL.
- 3) Recall: DFA's are **Recognizers**, Regex are **Generators**. CFG's are **Generators**. There is a **Recognizer** equivalent to it:

PDAs

PDA does not stand for Public Display of Affection PDA does stand for Push Down Automata.

They are NFAs with a stack.

- 1) There is a pumping theorem for CFL's but we won't be doing it.
- 2) If L_1 is a CFL and L_2 is regular then $L_1 \cap L_2$ is a CFL.
- 3) Recall: DFA's are **Recognizers**, Regex are **Generators**.

CFG's are **Generators**. There is a **Recognizer** equivalent to it:

PDAs

PDA does not stand for **Public Display of Affection** PDA does stand for **Push Down Automata**.

They are NFAs with a stack.

Deterministic CFG's are **defined** by DPDA's where are DFAs with a stack.

- 1) There is a pumping theorem for CFL's but we won't be doing it.
- 2) If L_1 is a CFL and L_2 is regular then $L_1 \cap L_2$ is a CFL.
- 3) Recall: DFA's are **Recognizers**, Regex are **Generators**.

CFG's are **Generators**. There is a **Recognizer** equivalent to it:

PDA does not stand for **Public Display of Affection** PDA does stand for **Push Down Automata**.

They are NFAs with a stack.

Deterministic CFG's are **defined** by DPDA's where are DFAs with a stack.

The proof that PDA-recognizers and CFG-generators are equivalent is messy so we won't be doing it. We won't deal with PDA's in this course at all.