
P, NP, and PH

1 Introduction to NP
Recall the definition of the class P :

Def 1.1 A is in P if there exists a Turing machine M and a polynomial p such that
∀x

• If x ∈ A then M(x) = Y ES.

• If x /∈ A then M(x) = NO.

• For all x M(x) runs in time ≤ p(|x|).

The typical way of defining NP is by using non-deterministic Turing machines. We
will NOT be taking this approach. We will instead use quantifiers. This is equivalent
to the definition using nondeterminism.

Def 1.2 A is in NP if there exists a set B ∈ P and a polynomial p such that

A = {x | (∃y)[|y| = p(|x|) ∧ (x, y) ∈ B]}.

Here is some intuition. Let A ∈ NP.

• If x ∈ A then there is a SHORT (poly in |x|) proof of this fact, namely y, such
that x can be VERIFIED in poly time. So if I wanted to convince you that
x ∈ L, I could give you y. You can verify (x, y) ∈ B easily and be convinced.

• If x /∈ A then there is NO proof that x ∈ A.

2 Closure Properties for P

The class P is closed under union, intersection, concatenation, and ∗. We just show
closure under concatenation and *. Frankly, the only one that is interesting is * since
the others are rather easy.

(We want to start the next theorem on the next page so it will all be on one page.)

1

Theorem 2.1 Let L1, L2 ∈ P . Then L1L2 ∈ P .

Proof: Let TM M1 decide L1 in time p1(n) (a polynomial) and TM M2 decide L2

in time p2(n) (a polynomial). Here is the code for determining if a string x ∈ L1L2.

1. Input string x of length n.

2. Look at all n+ 1 ways to split x into substrings y and z, where x = yz.

3. If y ∈ L1 (run M1 on y) and z ∈ L2 (run M2 on z) for some splitting of x, then
output TRUE. Else, output FALSE.

How fast is this algorithm? We run M1 on strings of length 0, 1, 2, . . . , n and M2

on strings of length 0, 1, 2, . . . , n. (The string of length 0 is the empty string: note
that if e ∈ L1 and x ∈ L2 then x ∈ L1L2.) We use O-notation to avoid having to deal
with details and constants. The run time is bounded above by

O(p1(0) + · · ·+ p1(n) + p2(0) + · · ·+ p2(n)) ≤ O(np1(n) + np2(n)).

Since p1 and p2 are polynomials, np1(n) + np2(n) is a polynomial.

Theorem ?? is an illustration of why poly time is a good notion mathematically.
Polynomials are closed under many operations (e.g., addition, multiplication), hence P
is closed under many operations (e.g., concatenation). Classes like DTIME(n) and
even DTIME(O(n)) are thought to not be closed under concatenation and many
other operations. (We do not know if they are.)

(We want to start the next theorem on the next page so it will all be on one page.)

2

Theorem 2.2 Let L ∈ P . Then L∗ ∈ P .

Proof: Let TM M decide L in time p(n) (a polynomial).
Given x of length n we want to know if x ∈ L∗. We could look at every way to

break x up into substrings. That would not give a poly time algorithm since there
are lots of ways to break up x (exercise: how many?).

We will actually solve a “harder” problem: given x of length n, determine for ALL
prefixes of x, are they in L∗. This is helpful since when we are trying to determine
if, say,

x1 · · ·xi ∈ L∗

we already know the answers to
e ∈ L∗
x1 ∈ L∗
x1x2 ∈ L∗
...
x1x2 · · ·xi−1 ∈ L∗.

Intuition: x1 · · ·xi ∈ L∗ IFF it can be broken into TWO pieces, the first one in L∗,
and the second in L.

We now present the algorithm that will determine if x ∈ L∗. The array A[i] will
store if x1 · · · xi is in L∗.

input x of length n

A[1] = A[2] = ... = A[n] = FALSE

A[0] = TRUE

for i = 1 to n do

for j = 0 to n-1 do

Use machine M to test for membership in L

if A[j] and (x_j, ..., x_{i-1}) in L then

A[i] = TRUE

end

end

end

output A[n]

What is the runtime of the above algorithm? The only time that matters is the
calls to M . There are O(n2) calls to M , all on inputs of length ≤ n, hence the runtime
is bounded by O(n2p(n)). Since p(n) is a polynomial, n2p(n) is a polynomial.

3

3 Closure Properties for NP

The class NP is closed under union, intersection, concatenation, and ∗. We just show
closure under concatenation. Frankly, all of these are easy. Hence you should be able
to do the others on your own at home. They may end up on a HW or Exam.

(We want to start the next theorem on the next page so it will all be on one page.)

4

Theorem 3.1 Let L1, L2 ∈ NP . Then L1L2 ∈ NP .

Proof:
Since L1 ∈ NP there exists set A1 in poly time q1(n) and a poly p1(n) such that

L1 = {x | (∃y)[|y| = p1(|x|) ∧ (x, y) ∈ A1}

Since L2 ∈ NP there exists set A2 in poly time q2(n) and a poly p2(n) such that

L2 = {x | (∃y)[|y| = p2(|x|) ∧ (x, y) ∈ A2}

Given x we want to know if x ∈ L1L2. Actually NO- we want evidence to VER-
IFY that x ∈ L1L2. So we just need to know where the split happens and the
corresponding y1, y2.

(NOTATION: below we use x1, x2. They are NOT the first two characters of x.
They are strings.)

L1L2 = {x | (∃x1, x2, y1, y2)[

• x = x1x2

• |y1| = p1(|x1|) ∧ (x1, y1) ∈ A1

• |y2| = p2(|x2|) ∧ (x2, y2) ∈ A2

]}

Notice that

|x1, x2, y1, y2| ≤ O(n+ n+ p1(n) + p2(n))

which is a poly in n. So the witness is short.
Notice that testing (x1, y1) ∈ A1 and (x2, y2) ∈ A2 takes times bounded by

O(q1(n+ p1(n)) + q2(n+ p2(n)))

which is a polynomial.

(The usual — we start the next section on a new page.)

5

4 NP Completeness

Def 4.1 A reduction (also called a many-to-one reduction) from a language L to a
language L′ is a polynomial-time computable function f such that x ∈ L iff f(x) ∈ L′.
We express this by writing L ≤p

m L′.

It may be verified that all the above reductions are transitive.

4.1 Defining NP Completeness

With the above in place, we define NP-hardness and NP-completeness:

Def 4.2 A language L is NP-hard if for every language L′ ∈ NP, there is a reduction
from L′ to L. A language L is NP-complete if it is NP-hard and also L ∈ NP.

We remark that one could also define NP-hardness via Cook reductions. However,
this seems to lead to a different definition. In particular, oracle access to any coNP-
complete language is enough to decide NP, meaning that any coNP-complete language
is NP-hard w.r.t. Cook reductions. On the other hand, if a coNP-complete language
were NP-hard w.r.t. reductions, this would imply NP = coNP (which is considered
to be unlikely).

We show the “obvious” NP-complete language:

Theorem 4.3 Define language L via:

L =

{
〈M,x, 1t〉 | M is a non-deterministic T.M.

which accepts x within t steps

}
.

Then L is NP-complete.

Proof: It is not hard to see that L ∈ NP. Given 〈M,x, 1t〉 as input, non-
deterministically choose a legal sequence of up to t moves of M on input x, and
accept if M accepts. This algorithm runs in non-deterministic polynomial time and
decides L.

To see that L is NP-hard, let L′ ∈ NP be arbitrary and assume that non-
deterministic machine M ′

L′ decides L′ and runs in time nc on inputs of size n. Define
function f as follows: given x, output 〈M ′

L′ , x, 1|x|
c〉. Note that (1) f can be computed

in polynomial time and (2) x ∈ L′ ⇔ f(x) ∈ L. We remark that this can be extended
to give a Levin reduction (between RL and RL′ , defined in the natural ways).

6

5 More NP-Compete Languages

It will be nice to find more “natural” NP-complete languages. The first problem we
prove NP-complete will have to use details of the machine model- Turing Machines.
All later results will be reductions using known NP-complete problems.

Def 5.1 1. SAT is the set of all boolean formulas that are satisfiable. That is,
φ(~x) ∈ SAT if there exists a vector ~b such that φ(~b) = TRUE.

2. CNFSAT is the set of all boolean formulas in SAT of the form C1 ∧ · · · ∧ Cm
where each Ci is an ∨ of literals.

3. k-SAT is the set of all boolean formulas in SAT of the form C1∧ · · ·∧Cm where
each Ci is an ∨ of exactly k literals.

4. DNFSAT is the set of all boolean formulas in SAT of the form C1 ∨ · · · ∨ Cm
where each Ci is an ∧ of literals.

5. k-DNFSAT is the set of all boolean formulas in SAT of the form C1 ∨ · · · ∨Cm
where each Ci is an ∧ of exactly k literals.

The following was proven by Stephen Cook and Leonid Levin independently
around 1970.

Theorem 5.2 CNFSAT is NP-complete.

Proof: It is easy to see that CNFSAT ∈ NP.
Let L ∈ NP. We show that L ≤p

m CNFSAT .
M be a TM and p, q be polynomials such that

L = {x | (∃y)[|y| = p(|x|) AND M(x, y) = 1]}

and M(x, y) runs in time q(|x|+ |y|).
We will actually have to deal with the details of the M . Let M = (Q,Σ, δ, q0, h)
We will also need to represent what a Turing Machine is doing at every stage.
The machine itself has a tape, something like

#abba#ab@ab#a

(We assume that everything to the right that is not seen is a #. Our convention
is that you CANNOT go off to the left— from the left most symbol you can’t go left.)

is in state q and the head is looking at (say) the @ sign.
We would represent this

#abba#ab(@, q)a

7

That is our convention— we extend the alphabet and allow symbols Σ×Q. The
symbol (@, q) means the symbol is @, the state is q, and that square is where the
head of the machine is.

If x ∈ L then there is a y of length q(|x|) such that the Turing machine on M
accepts.

Lets us say that with more detail.
If x ∈ L then there is a y and a sequence of configurations C1, C2, . . . , Ct such

that

• C1 is the configuration that says ‘input is x#y, and I am in the starting state.’

• For all i, Ci+1 follows from Ci (note that M is deterministic) using δ.

• Ct is the configuration that says “END and output is 1”

• t = p(|x|+ q(|x|)).

How to make all of this into a formula?
KEY 1: We will have a variable for every possible entry in every possible configu-
ration. Hence the variables are zi,j,σ where 1 ≤ i, j ≤ t, and σ ∈ Σ ∪ (Σ ∪ Q). The
intent is that if there is an accepting sequence of configurations then

zi,j,σ = T iff the j symbol in the ith configuration is σ.
To just make sure that for every i, j there is a unique σ such that zi,j,σ = T we

have, for every 1 ≤ i ≤ j, the following clauses.

∨
σ∈Σ∪(Σ×Q)

zi,j,σ

(NOTE- the actual formula would write out all of this and not be allowed to use∨
. With Poly time it MATTERS what kind of representation you use since we want

computations to be poly time in the length of the input.)
for each σ ∈ Σ ∪ (Σ×Q)

zi,j,σ →
∨

τ∈(Σ∪(Σ×Q)−{σ}
¬zi,j,τ

(It is an easy exercise to turn this into a set of clauses.)
KEY 2: The parts of the formula that say that C1 is the starting configuration for
x#y on the tape, and Ct is the configuration for saying DONE and output is 1, are
both easy. Note that for the y part- WE DO NOT KNOW y. So we have to write
that the y is a sequence of elements of Σ of length q(|x|).

Recall our convention for the first and last configuration:
Intuitively we start out with x and y laid out on the tape, and the head looking at

the # just to the right of y. The machine then runs, and if it gets to the qaccept state
then it accepts.

8

The following formula says that C1 says ‘start with x’ Let x = x1 · · ·xn.

z1,1,x1 ∧ · · · z1,n,xn ∧ x1,n+1,#∧

n+q(|x|+1∧
i=n+2

∨
σ∈Σ

z1,i,σ

∧z1,q(n)+n+2,(#,s) ∧
t(n)∧

i=q(n)+n+3

∧z1,i,#

Note that this formula is in CNF-form.
The following formula says that Ct says ‘ends with accept’

t(n)∨
i=1

∨
σ∈Σ

zt,i,(σ,qaccept

KEY 3: How do we say that going from Ci you must goto Ci+1. We first do a
thought experiment and then generalize. What if

δ(q, a) = (p, b).

Then if the Ci says that you are in state q and looking at an a then Ci+1 must be
in state p and overwrite a with b. Note that in both cases the rest of the configuration
has not changed.

How do we make this into a formula? The statement “Ci says that you are in
state q and looking at an a” and the head is at the jth position is

zi,j,(a,q)

We also have to know what else is around it. Assume that there is a b on the left
and a c on the right. So we have

(zi,j−1,b ∧ (zi,j,(a,q) ∧ (zi,j+1,c.

The statement that Ci+1 is in state p and having overwritten a with b

(zi+1,j−1,b ∧ (zi+1,j,(b,p) ∧ (zi+1,j+1,c.

This leads to the formula

t∧
i,j=1

(zi,j−1,b ∧ (zi,j,(a,q) ∧ (zi,j+1,c → (zi+1,j−1,b ∧ (zi+1,j,(b,p) ∧ (zi+1,j+1,c.

This formula can be put into CNF-form.

9

For all of the δ values we need a similar formula.
PUTTING IT ALL TOGETHER

Take the ∧ of the formulas in the last three KEY points and you have a formula
φ

x ∈ L ⇐⇒ φ ∈ CNFSAT.

6 Other NP-Complete Problems

Now that we have SAT is NP-Complete many other problems can be shown to be
NP-complete. They come from many different areas of computer science and math:
graph theory, scheduling, number theory, and others.

There are literally thousands of natural and distinct NP-complete problems!

7 Relating Function Problems to Decision Prob-

lems

Consider the NP-complete problem

CLIQUE = {(G, k) | G has a clique of size k}.

Note that while this is a nice problem, its not quite the one we really want to
solve. We want to compute the function

SIZECLIQUE(G) = k such that k is the size of the largest clique in G.
Or we may want to compute
FINDCLIQUE(G) = the largest clique in G (Note- this is ambiguous as there

could be a tie. This can be resolved in several ways.)
How hard are these problems?

Theorem 7.1 CLIQUE and FINDCLIQUE are Cook-equivalent. In particular

1. CLIQUE can be solved with one query to FINDCLIQUE.

2. FINDCLIQUE(G) can be computed with log n queries to CLIQUE

Proof:
The first part is trivial.
We give an algorithm for the second part.

1. Input G

10

2. Ask (G, n/2) ∈ CLIQUE? If YES then ask (G, 3n/4) ∈ CLIQUE. If NO then
ask (G, n/4) ∈ CLIQUE.

3. Continue using binary search until you get to the answer. This will take log n
queries.

The theorem above can be generalized to saying that if L ∈ NP then the function
associated to it (this can be done in several ways) is Cook Equivalent to L. Details
will be on a HW.

8 The Polynomial Hierarchy

Recall (one of) the definitions of NP.

Def 8.1 A ∈ NP if there exists a polynomial p and a polynomial predicate B such
that

A = {x | (∃y)[|y| ≤ p(|x|) ∧B(x, y)]}.

What if we allowed more quantifiers? Then what happens?

Notation 8.2

1. The expression

A = {x | (∃py)[B(x, y)]}
means that there is a polynomial p such that

A = {x | (∃y, |y| ≤ p(|x|))[B(x, y)]}.

2. The expression

A = {x | (∀py)[B(x, y)]

means that there is a polynomial p such that

A = {x | (∀y, |y| ≤ p(|x|))[B(x, y)]}.

3. The expression

A = {x | (∀py)(∃pz)[B(x, y, z)]

means that there are polynomials p1, p2 such that

A = {x | (∀y, |y| ≤ p1(|x|))(∃z, |z| ≤ p2(|x|))[B(x, y, z)]}.

4. One can define this notation for as long a string of quantifiers as you like. We
leave the formal definition to the reader.

11

In the following definition we include a definition and an alternative definition.

Def 8.3

1. A ∈ Σp
0 if A ∈ P. A ∈ Πp

0 if A ∈ P. (We include this so we use it inductively
later.)

2. A ∈ Σp
1 if there exists a set B ∈ P such that

A = {x | (∃py)[B(x, y)]}.
This is just NP.

3. A ∈ Πp
1 if there exists a set B ∈ P such that

A = {x | (∀py)[B(x, y)]}.
This is just all sets A such that A ∈ NP. It is often called co-NP.

4. A ∈ Σp
2 if there exists a set B ∈ P such that

A = {x | (∃py)(∀pz)[B(x, y, z)]}.

5. A ∈ Σp
2 (alternative definition) if there exists a set B ∈ Πp

1 such that

A = {x | (∃py)[B(x, y)]}.

6. A ∈ Πp
2 if there exists a set B ∈ P such that

A = {x | (∀py)(∃pz)[B(x, y, z)]}.

7. A ∈ Πp
2 (alternative definition) if A ∈ Σp

2.

8. Let i ∈ N. If i is even then A ∈ Σp
i if there exists B ∈ P such that

A = {x | (∃py1)(∀py2) · · · (∀pyi)[B(x, y1, . . . , yi)]

If i is odd then A ∈ Σp
i if there exists B ∈ P such that

A = {x | (∃py1)(∀py2) · · · (∃pyi)[B(x, y1, . . . , yi)]

9. Let i ∈ N. If i is even then A ∈ Πp
i if there exists B ∈ P such that

A = {x | (∀py1)(∃py2) · · · (∃pyi)[B(x, y1, . . . , yi)]

If i is odd then A ∈ Πp
i if there exists B ∈ P such that

A = {x | (∀py1)(∃py2) · · · (∀pyi)[B(x, y1, . . . , yi)]

10. Let i ∈ N and i ≥ 1. A ∈ Σp
i (alternative definition) if there exists B ∈ Πp

i−1

such that

A = {x | (∃py)[B(x, y)]}.
(Note- we use the definition of Σp

0, Πp
0 here.)

12

11. A ∈ Πp
i (alternative definition) if A ∈ Σp

i .

12. The polynomial hierarchy, denoted PH, is
⋃∞
i=0 Σp

i . Note that this is the same
as

⋃∞
i=0 Πp

i .

Def 8.4 A set A is Σp
i -complete if both of the following hold.

1. A ∈ Σp
i , and

2. For all B ∈ Σp
i , B ≤p

m A.

Def 8.5 A set A is Πp
i -complete if both of the following hold.

1. A ∈ Πp
i , and

2. For all B ∈ Πp
i , B ≤p

m A.

Def 8.6 A set A is Πp
i -complete (Alternative Definition) if A is Σp

i -complete.

Example 8.7 In all of the examples below x and y and xi are vectors of Boolean
variables.

1. A = {φ(x, y) | (∃b)(∀c)[φ(b, c)]}. This set is Σp
2-complete. It is clearly in Σp

2.
This is called QBF2. The QBF stands for Quantified Boolean Formula. The
proof that it is Σp

2-complete uses Cook-Levin Theorem.

2. One can define QBFi easily. It is Σp
i -complete.

3. QBF is the set of all φ(x1, . . . , xn) (the xi’s are vectors of variables) such that
(∃x1)(∀x2) · · · (Qxn)[φ(x1, . . . , xn)]. (Q is ∃p if n is odd and is ∀p if n is even.)
This set is thought to not be in any Σp

i or Πp
i .

4. Let TWO = {φ | φ has exactly two satisfying assignments }. We show that
TWO ∈ Σp

2.

TWO =

{φ | (∃b, c)(∀d)[b 6= c ∧ φ(b) ∧ φ(c) ∧ (φ(d)→ ((d = b) ∨ (d = c)))}
It is not known if TWO is Σp

2-complete; however it is thought to NOT be.

5. One can define THREE, FOUR, etc. easily. They are all in Σp
2.

6. One can define variants of TWO having to do with finding TWO Hamiltonian
cycles, TWO k-cliques, etc. Also THREE, etc. These are all Σp

2.

13

7. ODD = {φ | φ has an odd number of satisfying assignments } is thought to
NOT be in PH.

Recall that
There are literally thousands of natural and distinct NP-complete problems!
What about Σp

2-complete problems? Other levels? Alas- there are very few of
these. So why do we care about PH ?

We think that SAT /∈ P since

SAT ∈ P→ P = NP.

We tend to think that PH does not collapse to a lower level of the hierarchy (e.g.,
that PH = Σp

2). Hence if we have a statement XXX that we do not think is true but
cannot prove is false, we will be happy to instead show

XXX → PH collapses .

9 Collapsing PH

Theorem 9.1 If Πp
1 ⊆ Σp

1 then PH = Σp
1 = Πp

1.

Proof: Assume Σp
1 = Πp

1. We first show that Σp
2 = Σp

1.
Let L ∈ Σp

2. Hence there is a set B ∈ Πp
1 such that

L = {x | (∃py)[(x, y) ∈ B]}.
Since B ∈ Πp

1, by the premise B ∈ Σp
1. Therefore there exists C ∈ P such that

B = {(x, y) | (∃pz)[(x, y, z) ∈ C]}.
Replacing this definition of B in the definition of L we obtain

L = {x | (∃py)(∃pz)[(x, y, z) ∈ C]}.
This is clearly in Σp

1. Hence Σp
2 ⊆ Σp

1. Hence we have Σp
2 = Σp

1. By complementing
both sides we get Πp

2 = Πp
1.

One can now easily show that, for all i, Σp
i = Σp

1 by induction. One then gets
Πp
i = Πp

1. Hence PH = Πp
1 = Σp

1.

The following theorems are proven similarly

Theorem 9.2 Let i ∈ N. If Πp
i ⊆ Σp

i then PH = Σp
i = Πp

i .

Theorem 9.3 If Σp
i ⊆ Πp

i then PH = Σp
i = Πp

i .

14

