CFL’sin P

1 Introduction
We sketch the proof that all CFG’s are in Poly time. We will first need to get a CFG into a certain

form.

2 Definitions

Some productions are never used so we want to get rid of them. We now define useful rigorously.
Its negation will be useless.

Def 2.1 Let G = (N,%,P,S) bea CFG. Let A€ N and o € (NUo)*. A = « means that there
is a sequence of applications of productions that take you from A to «. (This is often written with
a G under the = and a * over it.)

Def 2.2 Let G = (N, X, P,S) be a CFG such that L(G) # 0. A Nonterminal A is useful if the
following two hold.

e There exists w € ¥* such that A — w.

o There exists a, € (N UX)* such that § = «aAp.

Note 2.3 If L(G) = 0 then it’s not clear how you can define useful nonterminals since S would be
useless. To avoid this problem we only deal with G such that L(G) # 0.

We can get by WITHOUT useless productions. We state this formally but do not prove it.
Theorem 2.4 There is an algorithm that will, given a CFG G such that L(G) # 0, produce a CFG
G’ with no useless productions such that L(G') = L(G).

Def 2.5 Let G = (N, %, P,S) be a CFG. A production is a Unit Production if it is of the form
A — B where A and B are nonterminals.

We can get by WITHOUT unit productions. We state this formally but do not prove it.
Theorem 2.6 There is an algorithm that will, given a CFG G, produce a CFG G’ with no unit
productions such that L(G) = L(G"). (This procedure does not introduce useless productions.)

Def 2.7 Let G = (N, %, P, S) be a CFG. A production is an e-Production if it is of the form A — e.

Can we get by without e-productions? If e € L then we need them. However, otherwise we do
not. We state this formally but do not prove it.



Theorem 2.8 There is an algorithm that will, given a CFG G produce a CFG G’ with no e-
productions such that L(G") = L(G) — {e}. (This procedure does not introduce useless or unit
productions. )

Putting together the above three theorems we have the following:

Theorem 2.9 There is an algorithm that will, given a CFG G such that L(G) # () produce a
CFG G’ with no useless productions, no unit productions, and no e-productions such that L(G") =

L(G) — {e}.

3 Chomsky Normal Form

Def 3.1 A grammar Let G = (N, X, P,S) is in Chomsky Normal Form if every production is either
of the form A — BC or A — o where o € X..

Theorem 3.2 There exists an algorithm that will, given a CFG G = (N, %, P, S) such that L(G) =
0 and e ¢ L(G) will output a grammar G' = (N', %, P',S") in Chomsky Normal Form such that
such that L(G') = L(G) — {€}.

Proof:

By Theorem 7?7 there is a CFG for L with not useless productions, unit productions, or e-
productions.

Look at each rule of the form A — ajas---ay,. Note that m # 1 since that would be a unit
production. If m = 2 then we do nothing since the production is already of the right form. So we
assume m > 3. We do the following.

1. Replace every terminal o; with nonterminals [o;] and add the rule [o;] — «;.

2. Note that the rule is now of the form
A= B Pm
where each 3; is a nonterminal.
Replace this with the following:
A= (B Bm1]Bm
(B Brm—1] = [B1+ - Brn—2]Bm—1
(81 Bn—2] = [B1 - Bm—3]Bm—2
etc until
[81B285]] — [B1B2]53
[8182] — B1a.



CFL’sin P

for i=1 to n
Ali,i] = {B|B — w;}
for d=1 to n—1
for i=1 to n—d
j=i+d
Ali,j] = Uik AD | B Ali,K]ANC € A[k+1,j] A D — BC}
If Se A[l,n] then output YES, else output NO.

4 CFL’sin P
Theorem 4.1 If L is a CFL then L is in O(n?).

Proof: If L = () then L is in O(n®) time. Apply the procedure in Theorem ?? to G to obtain a
G’ such that L(G") = L(G) — {e}. We show that L(G’) is in O(n3). This time does not count for
the algorithm. This time is preprocessing.

We use DYNAMIC PROGRAMMING! Intuitively: Given a string w = wijws...w, we want
to look which nonterminals A can produce w;...w;. We do this, first for i = j (that is j —i = 0)
then for j —7 =1, j —i = 2, etc. The KEY is that D generates w;wi41...w; iff D — BC and B
generates a prefix, say w; - - - wy, and C generates the remaining suffice, say wiy1 - - - wy.

The formal algorithm is above.

There are O(n?) spaces in the array to fill out. Each one takes at most O(n) to fill out.




