HW05 Solution

CFG with, for each rule, how many rules it becomes in CNF.

CFG with, for each rule, how many rules it becomes in CNF. $S \rightarrow ABAB$.

CFG with, for each rule, how many rules it becomes in CNF. $S \rightarrow ABAB$. CNF: 2 rules.

CFG with, for each rule, how many rules it becomes in CNF.

 $S \rightarrow ABAB$. CNF: 2 rules.

 $A \rightarrow a \cdots a$. n/4 a's.

CFG with, for each rule, how many rules it becomes in CNF.

 $S \rightarrow ABAB$. CNF: 2 rules.

 $A \rightarrow a \cdots a$. n/4 a's. CNF: $\log_2(n/4)$ rules.

CFG with, for each rule, how many rules it becomes in CNF.

 $S \rightarrow ABAB$. CNF: 2 rules.

 $A \rightarrow a \cdots a$. n/4 a's. CNF: $\log_2(n/4)$ rules.

 $B \rightarrow b \cdots b$. n/4 b's.

CFG with, for each rule, how many rules it becomes in CNF.

 $S \rightarrow ABAB$. CNF: 2 rules.

 $A \rightarrow a \cdots a$. n/4 a's. CNF: $\log_2(n/4)$ rules.

 $B \rightarrow b \cdots b$. n/4 b's. CNF: $\log_2(n/4)$ rules.

CFG with, for each rule, how many rules it becomes in CNF.

 $S \rightarrow ABAB$. CNF: 2 rules.

 $A \rightarrow a \cdots a$. n/4 a's. CNF: $\log_2(n/4)$ rules.

 $B \rightarrow b \cdots b$. n/4 b's. CNF: $\log_2(n/4)$ rules.

Number of Rules:

$$2 + 2\log_2(n/4) = 2 + 2(\log_2(n) - 2) = 2\log_2(n) - 2.$$

We give L as a \cup of set, each of which is reg or CFL.

Prob 3: CFG for
$$L = \{a^n b^n c^n : n \in \mathbb{N}\}$$

We give L as a \cup of set, each of which is reg or CFL. We first present sets where the a's, b's, c's are out of order.

We give L as a \cup of set, each of which is reg or CFL. We first present sets where the a's, b's, c's are out of order.

1. $\{a, b, c\}^*ba\{a, b, c\}^*$. This is regular.

Prob 3: CFG for
$$L = \{a^n b^n c^n : n \in \mathbb{N}\}$$

We give L as a \cup of set, each of which is reg or CFL. We first present sets where the a's, b's, c's are out of order.

- 1. $\{a, b, c\}^*ba\{a, b, c\}^*$. This is regular.
- 2. $\{a, b, c\}^*cb\{a, b, c\}^*$. This is regular.

We give L as a \cup of set, each of which is reg or CFL. We first present sets where the a's, b's, c's are out of order.

- 1. $\{a, b, c\}^*ba\{a, b, c\}^*$. This is regular.
- 2. $\{a, b, c\}^*cb\{a, b, c\}^*$. This is regular.
- 3. $\{a, b, c\}^* ca\{a, b, c\}^*$. This is regular.

Prob 3: CFG for
$$L = \{a^n b^n c^n : n \in \mathbb{N}\}$$

We give L as a \cup of set, each of which is reg or CFL. We first present sets where the a's, b's, c's are out of order.

- 1. $\{a, b, c\}^*ba\{a, b, c\}^*$. This is regular.
- 2. $\{a, b, c\}^*cb\{a, b, c\}^*$. This is regular.
- 3. $\{a, b, c\}^* ca\{a, b, c\}^*$. This is regular.

Next slide is the sets that are of the form $a^*b^*c^*$ but have the numbers-of-symbols wrong.

1. $\{a^mb^n: m > n\} \cdot c^*$. c^* is reg, hence CFL. CFL's are closed under concat. we need only give a CFG for

1. $\{a^mb^n: m > n\} \cdot c^*$. c^* is reg, hence CFL. CFL's are closed under concat. we need only give a CFG for $L_1 = \{a^mb^n: m > n\}$

1. $\{a^mb^n: m > n\} \cdot c^*$. c^* is reg, hence CFL. CFL's are closed under concat. we need only give a CFG for $L_1 = \{a^mb^n: m > n\}$ $S \to AT$ $T \to aTb \mid e$ $A \to Aa \mid a$ (The remaining sets are similar.)

{a^mbⁿ: m > n} · c*.
 c* is reg, hence CFL. CFL's are closed under concat. we need only give a CFG for
 L₁ = {a^mbⁿ: m > n}
 S → AT
 T → aTb | e
 A → Aa | a
 (The remaining sets are similar.)
 {a^mbⁿc*: m < n}

3. $\{a^*b^mc^n: m>n\}$

{a^mbⁿ: m > n} · c*.
 c* is reg, hence CFL. CFL's are closed under concat. we need only give a CFG for
 L₁ = {a^mbⁿ: m > n}
 S → AT
 T → aTb | e
 A → Aa | a
 (The remaining sets are similar.)
 {a^mbⁿc*: m < n}

←□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□</p

- 1. $\{a^mb^n: m > n\} \cdot c^*$. c^* is reg, hence CFL. CFL's are closed under concat. we need only give a CFG for $L_1 = \{a^mb^n: m > n\}$ $S \to AT$ $T \to aTb \mid e$ $A \to Aa \mid a$ (The remaining sets are similar.)
- 2. $\{a^m b^n c^* : m < n\}$
- 3. $\{a^*b^mc^n: m > n\}$
- 4. $\{a^*b^mc^n : m < n\}$

1. $\{a^mb^n: m > n\} \cdot c^*$. c^* is reg, hence CFL. CFL's are closed under concat. we need only give a CFG for $L_1 = \{a^mb^n: m > n\}$ $S \to AT$ $T \to aTb \mid e$ $A \to Aa \mid a$ (The remaining sets are similar.)

- 2. $\{a^m b^n c^* : m < n\}$
- 3. $\{a^*b^mc^n: m > n\}$
- 4. $\{a^*b^mc^n : m < n\}$
- 5. $\{a^m b^* c^n : m > n\}$

1. $\{a^mb^n: m > n\} \cdot c^*$. c^* is reg, hence CFL. CFL's are closed under concat. we need only give a CFG for $L_1 = \{a^mb^n: m > n\}$ $S \to AT$ $T \to aTb \mid e$ $A \to Aa \mid a$ (The remaining sets are similar.)

- 2. $\{a^m b^n c^* : m < n\}$
- 3. $\{a^*b^mc^n: m > n\}$
- 4. $\{a^*b^mc^n : m < n\}$
- 5. $\{a^m b^* c^n : m > n\}$
- 6. $\{a^m b^* c^n : m < n\}$

DFA keeps track of |w| and $\#_a(w)$.

DFA keeps track of |w| and $\#_a(w)$.

$$Q = \{(i,j) : 1 \le i \le n \text{ AND } j \le \frac{n}{2} \text{ AND } j \le i\} \cup \{d\}$$

DFA keeps track of |w| and $\#_a(w)$.

 $Q = \{(i,j) : 1 \le i \le n \text{ AND } j \le \frac{n}{2} \text{ AND } j \le i\} \cup \{d\}$ State (i,j): i chars seen, j of them are a's. d is dump.

DFA keeps track of |w| and $\#_a(w)$.

 $Q = \{(i,j) : 1 \le i \le n \text{ AND } j \le \frac{n}{2} \text{ AND } j \le i\} \cup \{d\}$ State (i,j): i chars seen, j of them are a's. d is dump.

We describe δ on the ordered pairs and then δ on d.

DFA keeps track of |w| and $\#_a(w)$.

 $Q = \{(i,j) : 1 \le i \le n \text{ AND } j \le \frac{n}{2} \text{ AND } j \le i\} \cup \{d\}$

State (i,j): i chars seen, j of them are a's. d is dump.

We describe δ on the ordered pairs and then δ on $\emph{d}.$

For $1 \le i \le n$, $1 \le j \le \frac{n}{2}$, and $\sigma \in \{a, b\}$:

DFA keeps track of |w| and $\#_a(w)$.

$$Q = \{(i,j) : 1 \le i \le n \text{ AND } j \le \frac{n}{2} \text{ AND } j \le i\} \cup \{d\}$$

State (i,j): i chars seen, j of them are a's. d is dump.

We describe δ on the ordered pairs and then δ on d.

For $1 \le i \le n$, $1 \le j \le \frac{n}{2}$, and $\sigma \in \{a, b\}$:

$$\delta((i,j),\sigma) = \begin{cases} (i+1,j) &, \text{ if } i \leq n-1 \text{ and } \sigma = b \\ (i+1,j+1) &, \text{ if } i \leq n-1 \text{ and } \sigma = a \text{ and } j \leq \frac{n}{2} \\ d &, \text{ if } i = n \vee (\sigma = a \wedge j = \frac{n}{2}) \end{cases}$$

DFA keeps track of |w| and $\#_a(w)$. $Q = \{(i,j) : 1 \le i \le n \text{ AND } j \le \frac{n}{2} \text{ AND } j \le i\} \cup \{d\}$ State (i,j): i chars seen, j of them are a's. d is dump. We describe δ on the ordered pairs and then δ on d.

For $1 \le i \le n$, $1 \le j \le \frac{n}{2}$, and $\sigma \in \{a, b\}$:

$$\delta((i,j),\sigma) = \begin{cases} (i+1,j) &, \text{ if } i \leq n-1 \text{ and } \sigma = b \\ (i+1,j+1) &, \text{ if } i \leq n-1 \text{ and } \sigma = a \text{ and } j \leq \frac{n}{2} \\ d &, \text{ if } i = n \lor (\sigma = a \land j = \frac{n}{2}) \end{cases}$$

For $\sigma \in \{a, b\}$, $\delta(d, \sigma)$ is defined by $\delta(d, \sigma) = d$.

DFA keeps track of |w| and $\#_a(w)$. $Q = \{(i,j) : 1 \le i \le n \text{ AND } j \le \frac{n}{2} \text{ AND } j \le i\} \cup \{d\}$

State (i,j): i chars seen, j of them are a's. d is dump.

We describe δ on the ordered pairs and then δ on $\emph{d}.$

For $1 \le i \le n$, $1 \le j \le \frac{n}{2}$, and $\sigma \in \{a, b\}$:

$$\delta((i,j),\sigma) = \begin{cases} (i+1,j) &, \text{ if } i \leq n-1 \text{ and } \sigma = b \\ (i+1,j+1) &, \text{ if } i \leq n-1 \text{ and } \sigma = a \text{ and } j \leq \frac{n}{2} \\ d &, \text{ if } i = n \lor (\sigma = a \land j = \frac{n}{2}) \end{cases}$$

For $\sigma \in \{a, b\}$, $\delta(d, \sigma)$ is defined by $\delta(d, \sigma) = d$. $F = \{(n, n/2)\}$.

DFA keeps track of |w| and $\#_a(w)$. $Q = \{(i,j): 1 \leq i \leq n \text{ AND } j \leq \frac{n}{2} \text{ AND } j \leq i\} \cup \{d\}$ State (i,j): i chars seen, j of them are a's. d is dump. We describe δ on the ordered pairs and then δ on d. For $1 \leq i \leq n$, $1 \leq j \leq \frac{n}{2}$, and $\sigma \in \{a,b\}$:

$$\delta((i,j),\sigma) = \begin{cases} (i+1,j) &, \text{ if } i \leq n-1 \text{ and } \sigma = b \\ (i+1,j+1) &, \text{ if } i \leq n-1 \text{ and } \sigma = a \text{ and } j \leq \frac{n}{2} \\ d &, \text{ if } i = n \lor (\sigma = a \land j = \frac{n}{2}) \end{cases}$$

For $\sigma \in \{a, b\}$, $\delta(d, \sigma)$ is defined by $\delta(d, \sigma) = d$. $F = \{(n, n/2)\}$. The number of states is $O(n^2)$. Can we do better? U

DFA keeps track of |w| and $\#_a(w)$.

$$Q = \{(i,j) : 1 \le i \le n \text{ AND } j \le \frac{n}{2} \text{ AND } j \le i\} \cup \{d\}$$

State (i,j): i chars seen, j of them are a's. d is dump.

We describe δ on the ordered pairs and then δ on d.

For $1 \le i \le n$, $1 \le j \le \frac{n}{2}$, and $\sigma \in \{a, b\}$:

$$\delta((i,j),\sigma) = \begin{cases} (i+1,j) &, \text{ if } i \leq n-1 \text{ and } \sigma = b \\ (i+1,j+1) &, \text{ if } i \leq n-1 \text{ and } \sigma = a \text{ and } j \leq \frac{n}{2} \\ d &, \text{ if } i = n \lor (\sigma = a \land j = \frac{n}{2}) \end{cases}$$

For $\sigma \in \{a, b\}$, $\delta(d, \sigma)$ is defined by $\delta(d, \sigma) = d$. $F = \{(n, n/2)\}$. The number of states is $O(n^2)$. Can we do better? U

Vote: Can do better, can't do better, UNK TO BILL.

Note that there are $|L| = \binom{n}{n/2} = \Theta(\frac{2^n}{\sqrt{n}})$.

Note that there are $|L| = \binom{n}{n/2} = \Theta(\frac{2^n}{\sqrt{n}})$. Let $N = \binom{n}{n/2}$.

Note that there are $|L| = \binom{n}{n/2} = \Theta(\frac{2^n}{\sqrt{n}})$. Let $N = \binom{n}{n/2}$. Let all the strings in L be w_1, w_2, \ldots, w_N .

Note that there are $|L| = \binom{n}{n/2} = \Theta(\frac{2^n}{\sqrt{n}})$. Let $N = \binom{n}{n/2}$. Let all the strings in L be w_1, w_2, \ldots, w_N . Regex for L:

$$\{w_1\}\cup\{w_2\}\cup\cdots\cup\{w_N\}.$$

Note that there are $|L| = \binom{n}{n/2} = \Theta(\frac{2^n}{\sqrt{n}})$. Let $N = \binom{n}{n/2}$. Let all the strings in L be w_1, w_2, \ldots, w_N . Regex for L:

$$\{w_1\} \cup \{w_2\} \cup \cdots \cup \{w_N\}.$$

Length is
$$Nn = \binom{n}{n/2} n = O(\sqrt{n}2^n)$$
.

Note that there are $|L| = \binom{n}{n/2} = \Theta(\frac{2^n}{\sqrt{n}})$. Let $N = \binom{n}{n/2}$. Let all the strings in L be w_1, w_2, \ldots, w_N . Regex for L:

$$\{w_1\} \cup \{w_2\} \cup \cdots \cup \{w_N\}.$$

Length is
$$Nn = \binom{n}{n/2}n = O(\sqrt{n}2^n)$$
.

Vote

Note that there are $|L| = \binom{n}{n/2} = \Theta(\frac{2^n}{\sqrt{n}})$. Let $N = \binom{n}{n/2}$. Let all the strings in L be w_1, w_2, \ldots, w_N . Regex for L:

$$\{w_1\} \cup \{w_2\} \cup \cdots \cup \{w_N\}.$$

Length is $Nn = \binom{n}{n/2}n = O(\sqrt{n}2^n)$.

Vote

There is a poly-sized regex and this is known.

Note that there are $|L| = \binom{n}{n/2} = \Theta(\frac{2^n}{\sqrt{n}})$. Let $N = \binom{n}{n/2}$. Let all the strings in L be w_1, w_2, \ldots, w_N . Regex for L:

$$\{w_1\} \cup \{w_2\} \cup \cdots \cup \{w_N\}.$$

Length is $Nn = \binom{n}{n/2}n = O(\sqrt{n}2^n)$.

Vote

There is a poly-sized regex and this is known.

There is not a poly-sized regex and this is known.

Note that there are $|L| = \binom{n}{n/2} = \Theta(\frac{2^n}{\sqrt{n}})$. Let $N = \binom{n}{n/2}$. Let all the strings in L be w_1, w_2, \ldots, w_N . Regex for L:

$$\{w_1\}\cup\{w_2\}\cup\cdots\cup\{w_N\}.$$

Length is $Nn = \binom{n}{n/2}n = O(\sqrt{n}2^n)$.

Vote

There is a poly-sized regex and this is known.

There is not a poly-sized regex and this is known.

Poly-sized regex or not is **UNK TO BILL**

Note that there are $|L| = \binom{n}{n/2} = \Theta(\frac{2^n}{\sqrt{n}})$. Let $N = \binom{n}{n/2}$. Let all the strings in L be w_1, w_2, \ldots, w_N . Regex for L:

$$\{w_1\} \cup \{w_2\} \cup \cdots \cup \{w_N\}.$$

Length is $Nn = \binom{n}{n/2} n = O(\sqrt{n}2^n)$.

Vote

There is a poly-sized regex and this is known. There is not a poly-sized regex and this is known. Poly-sized regex or not is **UNK TO BILL** Answer on the next slides.

Alphabet is $\{a, b\}$.

Alphabet is $\{a, b\}$. **Definition** $L_{n,k} = \{w : |w| = n \land \#_a(w) = k\}$.

Alphabet is $\{a, b\}$.

Definition $L_{n,k} = \{w : |w| = n \land \#_a(w) = k\}.$

1. Ellul-Kravwetu-Shallit-Wang, in 2005, showed that $L_{n,k}$ has a regex of size $O(n(\log n)^k)$.

Alphabet is $\{a, b\}$.

Definition $L_{n,k} = \{w : |w| = n \land \#_a(w) = k\}.$

1. Ellul-Kravwetu-Shallit-Wang, in 2005, showed that $L_{n,k}$ has a regex of size $O(n(\log n)^k)$.

Paper is here: https:

//cs.uwaterloo.ca/~shallit/Papers/re3.pdf

Alphabet is $\{a, b\}$.

Definition $L_{n,k} = \{w : |w| = n \land \#_a(w) = k\}.$

- 1. Ellul-Kravwetu-Shallit-Wang, in 2005, showed that $L_{n,k}$ has a regex of size $O(n(\log n)^k)$.

 Paper is here: https:
 //cs.uwaterloo.ca/~shallit/Papers/re3.pdf
- 2. If $k = \frac{n}{2}$ this is $2^{O(n)}$. If worked out then probably better than what we got, but not poly.

Alphabet is $\{a, b\}$.

Definition $L_{n,k} = \{w : |w| = n \land \#_a(w) = k\}.$

- 1. Ellul-Kravwetu-Shallit-Wang, in 2005, showed that $L_{n,k}$ has a regex of size $O(n(\log n)^k)$.

 Paper is here: https:
 //cs.uwaterloo.ca/~shallit/Papers/re3.pdf
- 2. If $k = \frac{n}{2}$ this is $2^{O(n)}$. If worked out then probably better than what we got, but not poly.
- 3. Mousavi, in 2017, showed that any regex for $L_{n,k}$ has length at least $\Omega(n(\log n)^k)$.

Alphabet is $\{a, b\}$.

```
Definition L_{n,k} = \{w : |w| = n \land \#_a(w) = k\}.
```

- 1. Ellul-Kravwetu-Shallit-Wang, in 2005, showed that $L_{n,k}$ has a regex of size $O(n(\log n)^k)$.

 Paper is here: https:
 //cs.uwaterloo.ca/~shallit/Papers/re3.pdf
- 2. If $k = \frac{n}{2}$ this is $2^{O(n)}$. If worked out then probably better than what we got, but not poly.
- 3. Mousavi, in 2017, showed that any regex for $L_{n,k}$ has length at least $\Omega(n(\log n)^k)$. Paper is here: https://arxiv.org/abs/1712.00811

Alphabet is $\{a, b\}$.

Definition $L_{n,k} = \{w : |w| = n \land \#_a(w) = k\}.$

- 1. Ellul-Kravwetu-Shallit-Wang, in 2005, showed that $L_{n,k}$ has a regex of size $O(n(\log n)^k)$.

 Paper is here: https:
 //cs.uwaterloo.ca/~shallit/Papers/re3.pdf
- 2. If $k = \frac{n}{2}$ this is $2^{O(n)}$. If worked out then probably better than what we got, but not poly.
- 3. Mousavi, in 2017, showed that any regex for $L_{n,k}$ has length at least $\Omega(n(\log n)^k)$. Paper is here: https://arxiv.org/abs/1712.00811
- 4. If $k = \frac{n}{2}$ this is $2^{\Omega(n)}$.

Alphabet is $\{a, b\}$.

Definition $L_{n,k} = \{w : |w| = n \land \#_a(w) = k\}.$

- 1. Ellul-Kravwetu-Shallit-Wang, in 2005, showed that $L_{n,k}$ has a regex of size $O(n(\log n)^k)$.

 Paper is here: https:
 //cs.uwaterloo.ca/~shallit/Papers/re3.pdf
- 2. If $k = \frac{n}{2}$ this is $2^{O(n)}$. If worked out then probably better than what we got, but not poly.
- 3. Mousavi, in 2017, showed that any regex for $L_{n,k}$ has length at least $\Omega(n(\log n)^k)$. Paper is here: https://arxiv.org/abs/1712.00811
- 4. If $k = \frac{n}{2}$ this is $2^{\Omega(n)}$.

So there is no polysized Regex for $L_{n,n/2}$.

Note that there are $|L| = \binom{n}{n/2} = \Theta(\frac{2^n}{\sqrt{n}})$.

Note that there are $|L| = \binom{n}{n/2} = \Theta(\frac{2^n}{\sqrt{n}})$. Let $N = \binom{n}{n/2}$.

Note that there are $|L| = \binom{n}{n/2} = \Theta(\frac{2^n}{\sqrt{n}})$. Let $N = \binom{n}{n/2}$. Let all the strings in L be w_1, w_2, \ldots, w_N .

Note that there are $|L| = \binom{n}{n/2} = \Theta(\frac{2^n}{\sqrt{n}})$. Let $N = \binom{n}{n/2}$. Let all the strings in L be w_1, w_2, \ldots, w_N . $(\forall i)$ G_i is CFG for $\{w_i\}$ of size O(n). S_i is start sym of G_i .

Note that there are $|L|=\binom{n}{n/2}=\Theta(\frac{2^n}{\sqrt{n}}).$ Let $N=\binom{n}{n/2}.$

Let all the strings in L be w_1, w_2, \ldots, w_N .

 $(\forall i)$ G_i is CFG for $\{w_i\}$ of size O(n). S_i is start sym of G_i .

The CFL:

Note that there are $|L| = \binom{n}{n/2} = \Theta(\frac{2^n}{\sqrt{n}})$. Let $N = \binom{n}{n/2}$.

Let all the strings in L be w_1, w_2, \ldots, w_N .

 $(\forall i)$ G_i is CFG for $\{w_i\}$ of size O(n). S_i is start sym of G_i .

The CFL:

1. Start State is *S*. For all *i* add $S \rightarrow S_i$.

Note that there are $|L| = \binom{n}{n/2} = \Theta(\frac{2^n}{\sqrt{n}})$. Let $N = \binom{n}{n/2}$.

Let all the strings in L be w_1, w_2, \ldots, w_N .

 $(\forall i)$ G_i is CFG for $\{w_i\}$ of size O(n). S_i is start sym of G_i .

The CFL:

- **1**. Start State is *S*. For all *i* add $S \rightarrow S_i$.
- 2. Add all of the rules of all of the G_i 's.

Note that there are $|L| = \binom{n}{n/2} = \Theta(\frac{2^n}{\sqrt{n}})$. Let $N = \binom{n}{n/2}$.

Let all the strings in L be w_1, w_2, \ldots, w_N .

 $(\forall i)$ G_i is CFG for $\{w_i\}$ of size O(n). S_i is start sym of G_i .

The CFL:

- **1**. Start State is *S*. For all *i* add $S \rightarrow S_i$.
- 2. Add all of the rules of all of the G_i 's.

N G_i 's. Each has O(n) rules. G has

Note that there are $|L|=\binom{n}{n/2}=\Theta(\frac{2^n}{\sqrt{n}}).$ Let $N=\binom{n}{n/2}.$

Let all the strings in L be w_1, w_2, \ldots, w_N .

 $(\forall i)$ G_i is CFG for $\{w_i\}$ of size O(n). S_i is start sym of G_i .

The CFL:

- **1**. Start State is *S*. For all *i* add $S \rightarrow S_i$.
- 2. Add all of the rules of all of the G_i 's.

N G_i 's. Each has O(n) rules. G has

$$O(Nn) = O\left(\binom{n}{n/2}n\right) = O(\sqrt{n}2^n)$$
 rules.

Note that there are $|L|=\binom{n}{n/2}=\Theta(\frac{2^n}{\sqrt{n}}).$ Let $N=\binom{n}{n/2}.$

Let all the strings in L be w_1, w_2, \ldots, w_N .

 $(\forall i)$ G_i is CFG for $\{w_i\}$ of size O(n). S_i is start sym of G_i .

The CFL:

- **1**. Start State is *S*. For all *i* add $S \rightarrow S_i$.
- 2. Add all of the rules of all of the G_i 's.

N G_i 's. Each has O(n) rules. G has

$$O(Nn) = O\left(\binom{n}{n/2}n\right) = O(\sqrt{n}2^n)$$
 rules.

Vote: Poly-known, not-Poly-known, UNK TO BILL.

Note that there are $|L|=\binom{n}{n/2}=\Theta(\frac{2^n}{\sqrt{n}})$. Let $N=\binom{n}{n/2}$.

Let all the strings in L be w_1, w_2, \ldots, w_N .

 $(\forall i)$ G_i is CFG for $\{w_i\}$ of size O(n). S_i is start sym of G_i .

The CFL:

- **1**. Start State is *S*. For all *i* add $S \rightarrow S_i$.
- 2. Add all of the rules of all of the G_i 's.

N G_i 's. Each has O(n) rules. G has

$$O(Nn) = O\left(\binom{n}{n/2}n\right) = O(\sqrt{n}2^n)$$
 rules.

Vote: Poly-known, not-Poly-known, **UNK TO BILL**. Answer on next slide.

Key Small CFG for $L_{i,j} = \{w : |w| = i \land \#_a(w) = j\}$

Key Small CFG for $L_{i,j} = \{w : |w| = i \land \#_a(w) = j\}$ The start symbol for the CFG for $L_{i,j}$ will be $S_{i,j}$.

Key Small CFG for $L_{i,j} = \{w : |w| = i \land \#_a(w) = j\}$ The start symbol for the CFG for $L_{i,j}$ will be $S_{i,j}$.

1. $L_{i,0} = \{b^i\}.$

Key Small CFG for $L_{i,j} = \{w : |w| = i \land \#_a(w) = j\}$ The start symbol for the CFG for $L_{i,j}$ will be $S_{i,j}$.

1. $L_{i,0} = \{b^i\}$. CFG-CNF with $O(\log i)$ rules.

Key Small CFG for $L_{i,j} = \{w : |w| = i \land \#_a(w) = j\}$ The start symbol for the CFG for $L_{i,j}$ will be $S_{i,j}$.

- 1. $L_{i,0} = \{b^i\}$. CFG-CNF with $O(\log i)$ rules.
- 2. $L_{1,1} = \{a\}.$

- 1. $L_{i,0} = \{b^i\}$. CFG-CNF with $O(\log i)$ rules.
- 2. $L_{1,1} = \{a\}$. CFG-CNF with O(1) rules.

- 1. $L_{i,0} = \{b^i\}$. CFG-CNF with $O(\log i)$ rules.
- 2. $L_{1,1} = \{a\}$. CFG-CNF with O(1) rules.
- 3. $L_{1,0} = \{b\}.$

- 1. $L_{i,0} = \{b^i\}$. CFG-CNF with $O(\log i)$ rules.
- 2. $L_{1,1} = \{a\}$. CFG-CNF with O(1) rules.
- 3. $L_{1,0} = \{b\}$. CFG-CNF with O(1) rules.

- 1. $L_{i,0} = \{b^i\}$. CFG-CNF with $O(\log i)$ rules.
- 2. $L_{1,1} = \{a\}$. CFG-CNF with O(1) rules.
- 3. $L_{1,0} = \{b\}$. CFG-CNF with O(1) rules.
- **4**. For $2 \le i \le n$, $1 \le j \le i$ add the rules:

- 1. $L_{i,0} = \{b^i\}$. CFG-CNF with $O(\log i)$ rules.
- 2. $L_{1,1} = \{a\}$. CFG-CNF with O(1) rules.
- 3. $L_{1,0} = \{b\}$. CFG-CNF with O(1) rules.
- 4. For $2 \le i \le n$, $1 \le j \le i$ add the rules: $S_{i,j} \to aS_{i-1,j-1}$

- 1. $L_{i,0} = \{b^i\}$. CFG-CNF with $O(\log i)$ rules.
- 2. $L_{1,1} = \{a\}$. CFG-CNF with O(1) rules.
- 3. $L_{1,0} = \{b\}$. CFG-CNF with O(1) rules.
- 4. For $2 \le i \le n$, $1 \le j \le i$ add the rules: $S_{i,j} \to aS_{i-1,j-1}$ $S_{i,j} \to bS_{i-1,j}$

Key Small CFG for $L_{i,j} = \{w : |w| = i \land \#_a(w) = j\}$ The start symbol for the CFG for $L_{i,j}$ will be $S_{i,j}$.

- 1. $L_{i,0} = \{b^i\}$. CFG-CNF with $O(\log i)$ rules.
- 2. $L_{1,1} = \{a\}$. CFG-CNF with O(1) rules.
- 3. $L_{1,0} = \{b\}$. CFG-CNF with O(1) rules.
- 4. For $2 \le i \le n$, $1 \le j \le i$ add the rules: $S_{i,j} \to aS_{i-1,j-1}$ $S_{i,j} \to bS_{i-1,j}$

If $S_{i,j}$ is Start then get $L_{i,j}$.

Key Small CFG for $L_{i,j} = \{w : |w| = i \land \#_a(w) = j\}$ The start symbol for the CFG for $L_{i,j}$ will be $S_{i,j}$.

- 1. $L_{i,0} = \{b^i\}$. CFG-CNF with $O(\log i)$ rules.
- 2. $L_{1,1} = \{a\}$. CFG-CNF with O(1) rules.
- 3. $L_{1,0} = \{b\}$. CFG-CNF with O(1) rules.
- 4. For $2 \le i \le n$, $1 \le j \le i$ add the rules: $S_{i,j} \to aS_{i-1,j-1}$ $S_{i,j} \to bS_{i-1,j}$

If $S_{i,j}$ is Start then get $L_{i,j}$.

"I am sure you can all go home and prove that by induction."

Key Small CFG for $L_{i,j} = \{w : |w| = i \land \#_a(w) = j\}$ The start symbol for the CFG for $L_{i,j}$ will be $S_{i,j}$.

- 1. $L_{i,0} = \{b^i\}$. CFG-CNF with $O(\log i)$ rules.
- 2. $L_{1,1} = \{a\}$. CFG-CNF with O(1) rules.
- 3. $L_{1,0} = \{b\}$. CFG-CNF with O(1) rules.
- 4. For $2 \le i \le n$, $1 \le j \le i$ add the rules: $S_{i,j} \to aS_{i-1,j-1}$ $S_{i,j} \to bS_{i-1,j}$

If $S_{i,j}$ is Start then get $L_{i,j}$.

"I am sure you can all go home and prove that by induction." The Grammar is of size $O(n^2)$.

Key Small CFG for $L_{i,j} = \{w : |w| = i \land \#_a(w) = j\}$ The start symbol for the CFG for $L_{i,j}$ will be $S_{i,j}$.

- 1. $L_{i,0} = \{b^i\}$. CFG-CNF with $O(\log i)$ rules.
- 2. $L_{1,1} = \{a\}$. CFG-CNF with O(1) rules.
- 3. $L_{1,0} = \{b\}$. CFG-CNF with O(1) rules.
- 4. For $2 \le i \le n$, $1 \le j \le i$ add the rules: $S_{i,j} \to aS_{i-1,j-1}$ $S_{i,j} \to bS_{i-1,j}$

If $S_{i,j}$ is Start then get $L_{i,j}$.

"I am sure you can all go home and prove that by induction."

The Grammar is of size $O(n^2)$.

Upshot There is a CFG for $L_{n,n/2}$ of size $O(n^2)$.

(I obviously made up these slides before class began, so what I say here might not be true.)

(I obviously made up these slides before class began, so what I say here might not be true.)

Most of you voted as follows:

(I obviously made up these slides before class began, so what I say here might not be true.)

Most of you voted as follows:

1. $L_{n,n/2}$ did NOT have a poly sized CFG-CNF.

(I obviously made up these slides before class began, so what I say here might not be true.)

Most of you voted as follows:

- 1. $L_{n,n/2}$ did NOT have a poly sized CFG-CNF.
- 2. UNK TO BILL

(I obviously made up these slides before class began, so what I say here might not be true.)

Most of you voted as follows:

- 1. $L_{n,n/2}$ did NOT have a poly sized CFG-CNF.
- 2. UNK TO BILL

To show that X does not exist you need to show that there is no clever idea and there is no hard math that will show that X does exist.

(I obviously made up these slides before class began, so what I say here might not be true.)

Most of you voted as follows:

- 1. $L_{n,n/2}$ did NOT have a poly sized CFG-CNF.
- 2. UNK TO BILL

To show that X does not exist you need to show that there is no clever idea and there is no hard math that will show that X does exist.

In this case someone clever did come along with a solution.

(I obviously made up these slides before class began, so what I say here might not be true.)

Most of you voted as follows:

- 1. $L_{n,n/2}$ did NOT have a poly sized CFG-CNF.
- 2. UNK TO BILL

To show that X does not exist you need to show that there is no clever idea and there is no hard math that will show that X does exist.

In this case someone clever did come along with a solution.

When was $L_{n,k}$ proven to have a small grammar, and by who?

(I obviously made up these slides before class began, so what I say here might not be true.)

Most of you voted as follows:

- 1. $L_{n,n/2}$ did NOT have a poly sized CFG-CNF.
- 2. UNK TO BILL

To show that X does not exist you need to show that there is no clever idea and there is no hard math that will show that X does exist.

In this case someone clever did come along with a solution.

When was $L_{n,k}$ proven to have a small grammar, and by who? Bill Gasarch while preparing hw05 in February 2024.

(I obviously made up these slides before class began, so what I say here might not be true.)

Most of you voted as follows:

- 1. $L_{n,n/2}$ did NOT have a poly sized CFG-CNF.
- 2. UNK TO BILL

To show that X does not exist you need to show that there is no clever idea and there is no hard math that will show that X does exist.

In this case someone clever did come along with a solution.

When was $L_{n,k}$ proven to have a small grammar, and by who? Bill Gasarch while preparing hw05 in February 2024.

No New Ideas: It used Dyanmic Programming.