HWO05 Solution

2) CFG-CNF for Ll = {a”/4b”/4an/4bn/4}

CFG with, for each rule, how many rules it becomes in CNF.

2) CFG-CNF for Ll = {a”/4b”/4an/4bn/4}

CFG with, for each rule, how many rules it becomes in CNF.
S — ABAB.

2) CFG-CNF for Ll = {a”/4b"/4an/4bn/4}

CFG with, for each rule, how many rules it becomes in CNF.
S — ABAB. CNF: 2 rules.

2) CFG-CNF for Ll = {a”/4b"/4an/4bn/4}

CFG with, for each rule, how many rules it becomes in CNF.
S — ABAB. CNF: 2 rules.
A—a---a n/da's.

2) CFG-CNF for Ll = {a”/4b"/4an/4bn/4}

CFG with, for each rule, how many rules it becomes in CNF.
S — ABAB. CNF: 2 rules.
A— a---a. n/4 a's. CNF: log,(n/4) rules.

2) CFG-CNF for Ll = {a”/4b"/4an/4bn/4}

CFG with, for each rule, how many rules it becomes in CNF.
S — ABAB. CNF: 2 rules.

A— a---a. n/4 a's. CNF: log,(n/4) rules.

B—b---b. n/4bs.

2) CFG-CNF for Ly = {a"/*b"/*a"/*p"/*}

CFG with, for each rule, how many rules it becomes in CNF.
S — ABAB. CNF: 2 rules.

A— a---a. n/4 a's. CNF: log,(n/4) rules.

B — b---b. n/4 b's. CNF: log,(n/4) rules.

2) CFG-CNF for Ly = {a"/*b"/*a"/*p"/*}

CFG with, for each rule, how many rules it becomes in CNF.
S — ABAB. CNF: 2 rules.

A— a---a. n/4 a's. CNF: log,(n/4) rules.

B — b---b. n/4 b's. CNF: log,(n/4) rules.

Number of Rules:
2+ 2log,(n/4) = 2 + 2(log,(n) — 2) = 2log,(n) — 2.

Prob 3: CFG for L = {a"b"c" : n € N}

We give L as a U of set, each of which is reg or CFL.

Prob 3: CFG for L = {a"b"c" : n € N}

We give L as a U of set, each of which is reg or CFL.
We first present sets where the a's, b's, c's are out of order.

Prob 3: CFG for L = {a"b"c" : n € N}

We give L as a U of set, each of which is reg or CFL.
We first present sets where the a's, b's, c's are out of order.

1. {a, b,c}*baf{a, b, c}*. This is regular.

Prob 3: CFG for L = {a"b"c" : n € N}

We give L as a U of set, each of which is reg or CFL.
We first present sets where the a's, b's, c's are out of order.

1. {a, b,c}*baf{a, b, c}*. This is regular.
2. {a, b, c}*cb{a, b,c}*. Thisis regular.

Prob 3: CFG for L = {a"b"c" : n € N}

We give L as a U of set, each of which is reg or CFL.
We first present sets where the a's, b's, c's are out of order.

1. {a, b,c}*baf{a, b, c}*. This is regular.
2. {a, b, c}*cb{a, b,c}*. Thisis regular.
3. {a, b, c}*ca{a, b, c}*. This is regular.

Prob 3: CFG for L = {a"b"c" : n € N}

We give L as a U of set, each of which is reg or CFL.
We first present sets where the a's, b's, c's are out of order.

1. {a, b,c}*baf{a, b, c}*. This is regular.

2. {a, b, c}*cb{a, b,c}*. Thisis regular.

3. {a, b, c}*ca{a, b, c}*. This is regular.
Next slide is the sets that are of the form a*b*c* but have the
numbers-of-symbols wrong.

Prob 3: CFG for L = {a"b"c" : n € N}(cont)

1. {a™b": m > n}-c".
c* is reg, hence CFL. CFL's are closed under concat. we
need only give a CFG for

Prob 3: CFG for L = {a"b"c" : n € N}(cont)

1. {a™b": m > n}-c".
c* is reg, hence CFL. CFL's are closed under concat. we

need only give a CFG for
Ly ={a™b": m> n}

Prob 3: CFG for L = {a"b"c" : n € N}(cont)

1. {a™b": m > n}-c".
c* is reg, hence CFL. CFL's are closed under concat. we
need only give a CFG for
Ly ={a™b": m> n}
S— AT
T —aTb | e
A—Aa | a
(The remaining sets are similar.)

Prob 3: CFG for L = {a"b"c" : n € N}(cont)

1. {a™b": m > n}-c".
c* is reg, hence CFL. CFL's are closed under concat. we
need only give a CFG for
Ly ={a™b": m> n}
S— AT
T —aTb | e
A—Aa | a
(The remaining sets are similar.)

2. {a"b"c* : m < n}

Prob 3: CFG for L = {a"b"c" : n € N}(cont)

1. {a™b": m > n}-c".
c* is reg, hence CFL. CFL's are closed under concat. we
need only give a CFG for
Ly ={a™b": m> n}
S— AT
T —aTb | e
A—Aa | a
(The remaining sets are similar.)

2. {a"b"c* : m < n}
3. {a*b™c" . m > n}

Prob 3: CFG for L = {a"b"c" : n € N}(cont)

1. {a™b": m > n}-c".
c* is reg, hence CFL. CFL's are closed under concat. we
need only give a CFG for
Ly ={a™b": m> n}
S— AT
T —aTb | e
A—Aa | a
(The remaining sets are similar.)
2. {a"b"c* : m < n}
3. {a*b™c" . m > n}
4. {a*b™c" : m < n}

Prob 3: CFG for L = {a"b"c" : n € N}(cont)

1. {a™b": m > n}-c".
c* is reg, hence CFL. CFL's are closed under concat. we
need only give a CFG for
Ly ={a™b": m> n}
S— AT
T —aTb | e
A—Aa | a
(The remaining sets are similar.)
- {a™b"c* : m < n}
- {a*bmc" : m > n}
- {a*b™c" i m < n}
. {a™b*c" : m > n}

(G2~ NGV \O)

Prob 3: CFG for L = {a"b"c" : n € N}(cont)

1. {a™b": m > n}-c".
c* is reg, hence CFL. CFL's are closed under concat. we
need only give a CFG for
Ly ={a™b": m> n}
S— AT
T —aTb | e
A—Aa | a
(The remaining sets are similar.)
- {a™b"c* : m < n}
- {a*bmc" : m > n}
- {a*b™c" i m < n}
. {a™b*c" : m > n}
. {a™b*c" : m < n}

S O AW N

Prob 4a: DFA for L = {w : |w| = nA#a.(w) = n/2}

Prob 4a: DFA for L = {w : |w| = nA#a.(w) = n/2}

DFA keeps track of |w| and #,(w).

Prob 4a: DFA for L = {w : |w| = nA#a.(w) = n/2}

DFA keeps track of |w| and #,(w).
Q=1{(i,j):1<i<nAND <2 AND < i} U{d}

Prob 4a: DFA for L = {w : |w| = nA#,(w) =n/2}

DFA keeps track of |w| and #,(w).
Q=1{(i,j):1<i<nAND <2 ANDj < i} U{d}
State (/,j): i chars seen, j of them are a's. d is dump.

Prob 4a: DFA for L = {w : |w| = nA#,(w) = n/2}

DFA keeps track of |w| and #,(w).
Q={(i.j):1<i<nAND <2 ANDj < i} U{d}
State (/,j): i chars seen, j of them are a's. d is dump.
We describe § on the ordered pairs and then § on d.

Prob 4a: DFA for L = {w : |w| = nA#,(w) = n/2}

DFA keeps track of |w| and #,(w).

Q={(i,j): 1<i<nAND <2 AND j < i} U{d}
State (/,j): i chars seen, j of them are a's. d is dump.
We describe § on the ordered pairs and then § on d.
For1<i<n 1<j<% ando € {a b}:

Prob 4a: DFA for L = {w : |w| = nA#,(w) = n/2}

DFA keeps track of |w| and #,(w).

Q={(i,j): 1<i<nAND <2 AND j < i} U{d}
State (/,j): i chars seen, j of them are a's. d is dump.
We describe § on the ordered pairs and then § on d.
For1<i<n 1<j<% ando € {a b}:

(i+1,)) ,ifi<n—lando=05b
0((i,j),0) =S (i+1,j+1) ,ifi<n—1lando=aandj <}
d Jifi=nV(c=anj=1)

Prob 4a: DFA for L = {w : |w| = nA#,(w) = n/2}

DFA keeps track of |w| and #,(w).
Q={(i.j):1<i<nAND <2 ANDj < i} U{d}
State (/,j): i chars seen, j of them are a's. d is dump.
We describe § on the ordered pairs and then § on d.
For1<i<n 1<j<% ando € {a b}:

(i+1,)) ,ifi<n—lando=05b
0((i,j),0) =S (i+1,j+1) ,ifi<n—1lando=aandj <}
d Jifi=nV(c=anj=1)

For o € {a, b}, 6(d, o) is defined by d(d, o) = d.

Prob 4a: DFA for L = {w : |w| = nA#,(w) = n/2}

DFA keeps track of |w| and #,(w).
Q={(i.j):1<i<nAND <2 ANDj < i} U{d}
State (/,j): i chars seen, j of them are a's. d is dump.
We describe § on the ordered pairs and then § on d.
For1<i<n 1<j<% ando € {a b}:

(i+1,)) ,ifi<n—lando=05b
0((i,j),0) =S (i+1,j+1) ,ifi<n—1lando=aandj <}
d Jifi=nV(c=anj=1)

For o € {a, b}, 6(d, o) is defined by d(d, o) = d.
F ={(n,n/2)}.

Prob 4a: DFA for L = {w : |w| = nA#,(w) = n/2}

DFA keeps track of |w| and #,(w).
Q={(i.j):1<i<nAND <2 ANDj < i} U{d}
State (/,j): i chars seen, j of them are a's. d is dump.
We describe § on the ordered pairs and then § on d.
For1<i<n 1<j<% ando € {a b}:

(i+1,)) ,ifi<n—lando=05b
0((i,j),0) =S (i+1,j+1) ,ifi<n—1lando=aandj <}
d Jifi=nV(c=anj=1)

For o € {a, b}, 6(d, o) is defined by d(d, o) = d.
F = {(n,n/2)}. The number of states is O(n?). Can we do
better? U

Prob 4a: DFA for L = {w : |w| = nA#,(w) = n/2}

DFA keeps track of |w| and #,(w).
Q={(i.j):1<i<nAND <2 ANDj < i} U{d}
State (/,j): i chars seen, j of them are a's. d is dump.
We describe § on the ordered pairs and then § on d.
For1<i<n 1<j<% ando € {a b}:

(i+1,)) ,ifi<n—lando=05b
0((i,j),0) =S (i+1,j+1) ,ifi<n—1lando=aandj <}
d Jifi=nV(c=anj=1)

For o € {a, b}, 6(d, o) is defined by d(d, o) = d.

F = {(n,n/2)}. The number of states is O(n?). Can we do
better? U

Vote: Can do better, can't do better, UNK TO BILL.

Prob 4b: Rgx for L = {w : |w| = n A #.(w) = n/2}

Prob 4b: Rgx for L = {w : |w| = n A #.(w) = n/2}

Note that there are [L| = (,},) = ©(7).

Prob 4b: Rgx for L = {w : |w| = n A #.(w) = n/2}

Note that there are |L| = (n’/’2) = @(\2/—"5) Let N = (n72).

Prob 4b: Rgx for L = {w : |w| = n A #.(w) = n/2}

Note that there are |L| = (n’/’2) = @(\2/—"5) Let N = (n72).

Let all the strings in L be wy, wo, ..., wy.

Prob 4b: Rgx for L = {w : |w| = n A #.(w) = n/2}

Note that there are |L| = (n’/’2) = @(\2/—"5) Let N = (n72).

Let all the strings in L be wy, ws, ..., wy. Regex for L:

{mU{mwr} U---U{wy}.

Prob 4b: Rgx for L = {w : |w| = n A #.(w) = n/2}

Note that there are |L| = (n’/’2) = @(\2/—"5) Let N = (n72>'

Let all the strings in L be wy, ws, ..., wy. Regex for L:

{mu{wa} U--- U {wpy}.
Length is Nn = (n’/’2)n = O(y/n2").

Prob 4b: Rgx for L = {w : |w| = n A #.(w) = n/2}

Note that there are |L| = (n’/’2) = @(\2/—"5) Let N = (n72>'
Let all the strings in L be wy, ws, ..., wy. Regex for L:
{m}Uu{wa} U - U{wn}.

Length is Nn = (n’/’2)n = O(y/n2").
Vote

Prob 4b: Rgx for L = {w : |w| = n A #,(w) = n/2}

Note that there are |L| = (n’/’2) = @(\2/—"5) Let N = (n,/72>'

Let all the strings in L be wy, ws, ..., wy. Regex for L:

{mU{mwr} U---U{wy}.

Length is Nn = (n72)n = O(y/n2").

Vote
There is a poly-sized regex and this is known.

Prob 4b: Rgx for L = {w : |w| = n A #,(w) = n/2}

Note that there are |L| = (n’/’2) = @(\2/—"5) Let N = (n’/’z).

Let all the strings in L be wy, ws, ..., wy. Regex for L:

{mU{mwr} U---U{wy}.

Length is Nn = (n72)n = O(y/n2").

Vote
There is a poly-sized regex and this is known.
There is not a poly-sized regex and this is known.

Prob 4b: Rgx for L = {w : |w| = n A #,(w) = n/2}

Note that there are |L| = (n’/’2) = @(\2/—"5) Let N = (n’/’z).

Let all the strings in L be wy, ws, ..., wy. Regex for L:

{mU{mwr} U---U{wy}.

Length is Nn = (n72)n = O(y/n2").

Vote

There is a poly-sized regex and this is known.
There is not a poly-sized regex and this is known.
Poly-sized regex or not is UNK TO BILL

Prob 4b: Rgx for L = {w : |w| = n A #,(w) = n/2}

Note that there are |L| = (n’/’2) = @(\2/—"5) Let N = (n’/’z).

Let all the strings in L be wy, ws, ..., wy. Regex for L:

{mU{mwr} U---U{wy}.

Length is Nn = (n72)n = O(y/n2").

Vote

There is a poly-sized regex and this is known.
There is not a poly-sized regex and this is known.
Poly-sized regex or not is UNK TO BILL
Answer on the next slides.

There is No Poly Sized Regex for L

https://cs.uwaterloo.ca/~shallit/Papers/re3.pdf
https://cs.uwaterloo.ca/~shallit/Papers/re3.pdf
https://arxiv.org/abs/1712.00811

There is No Poly Sized Regex for L

Alphabet is {a, b}.

https://cs.uwaterloo.ca/~shallit/Papers/re3.pdf
https://cs.uwaterloo.ca/~shallit/Papers/re3.pdf
https://arxiv.org/abs/1712.00811

There is No Poly Sized Regex for L

Alphabet is {a, b}.
Definition L, = {w : |w| = n A #.(w) = k}.

https://cs.uwaterloo.ca/~shallit/Papers/re3.pdf
https://cs.uwaterloo.ca/~shallit/Papers/re3.pdf
https://arxiv.org/abs/1712.00811

There is No Poly Sized Regex for L

Alphabet is {a, b}.
Definition L, = {w : |w| = n A #.(w) = k}.
1. Ellul-Kravwetu-Shallit-Wang, in 2005, showed that L, «
has a regex of size O(n(log n)*).

https://cs.uwaterloo.ca/~shallit/Papers/re3.pdf
https://cs.uwaterloo.ca/~shallit/Papers/re3.pdf
https://arxiv.org/abs/1712.00811

There is No Poly Sized Regex for L

Alphabet is {a, b}.
Definition L, = {w : |w| = n A #.(w) = k}.
1. Ellul-Kravwetu-Shallit-Wang, in 2005, showed that L, «
has a regex of size O(n(log n)*).
Paper is here: https:
//cs.uwaterloo.ca/~shallit/Papers/re3.pdf

https://cs.uwaterloo.ca/~shallit/Papers/re3.pdf
https://cs.uwaterloo.ca/~shallit/Papers/re3.pdf
https://arxiv.org/abs/1712.00811

There is No Poly Sized Regex for L

Alphabet is {a, b}.
Definition L, = {w : |w| = n A #.(w) = k}.
1. Ellul-Kravwetu-Shallit-Wang, in 2005, showed that L, «
has a regex of size O(n(log n)*).
Paper is here: https:
//cs.uwaterloo.ca/~shallit/Papers/re3.pdf
2. If k = 2 this is 2°(")_ If worked out then probably better
than what we got, but not poly.

https://cs.uwaterloo.ca/~shallit/Papers/re3.pdf
https://cs.uwaterloo.ca/~shallit/Papers/re3.pdf
https://arxiv.org/abs/1712.00811

There is No Poly Sized Regex for L

Alphabet is {a, b}.
Definition L, = {w : |w| = n A #.(w) = k}.
1. Ellul-Kravwetu-Shallit-Wang, in 2005, showed that L, «
has a regex of size O(n(log n)*).
Paper is here: https:
//cs.uwaterloo.ca/~shallit/Papers/re3.pdf
2. If k = 2 this is 2°(")_ If worked out then probably better
than what we got, but not poly.
3. Mousavi, in 2017, showed that any regex for L, has
length at least Q(n(log n)*).

https://cs.uwaterloo.ca/~shallit/Papers/re3.pdf
https://cs.uwaterloo.ca/~shallit/Papers/re3.pdf
https://arxiv.org/abs/1712.00811

There is No Poly Sized Regex for L

Alphabet is {a, b}.
Definition L, = {w : |w| = n A #.(w) = k}.
1. Ellul-Kravwetu-Shallit-Wang, in 2005, showed that L, «
has a regex of size O(n(log n)*).
Paper is here: https:
//cs.uwaterloo.ca/~shallit/Papers/re3.pdf
2. If k = 2 this is 2°(")_ If worked out then probably better
than what we got, but not poly.
3. Mousavi, in 2017, showed that any regex for L, has
length at least Q(n(log n)*).
Paper is here: https://arxiv.org/abs/1712.00811

https://cs.uwaterloo.ca/~shallit/Papers/re3.pdf
https://cs.uwaterloo.ca/~shallit/Papers/re3.pdf
https://arxiv.org/abs/1712.00811

There is No Poly Sized Regex for L

Alphabet is {a, b}.
Definition L, = {w : |w| = n A #.(w) = k}.
1. Ellul-Kravwetu-Shallit-Wang, in 2005, showed that L, «
has a regex of size O(n(log n)*).
Paper is here: https:
//cs.uwaterloo.ca/~shallit/Papers/re3.pdf
2. If k = 2 this is 2°(")_ If worked out then probably better
than what we got, but not poly.
3. Mousavi, in 2017, showed that any regex for L, has
length at least Q(n(log n)*).
Paper is here: https://arxiv.org/abs/1712.00811
4. If k = 2 this is 2%,

https://cs.uwaterloo.ca/~shallit/Papers/re3.pdf
https://cs.uwaterloo.ca/~shallit/Papers/re3.pdf
https://arxiv.org/abs/1712.00811

There is No Poly Sized Regex for L

Alphabet is {a, b}.
Definition L, = {w : |w| = n A #.(w) = k}.
1. Ellul-Kravwetu-Shallit-Wang, in 2005, showed that L, «
has a regex of size O(n(log n)*).
Paper is here: https:
//cs.uwaterloo.ca/~shallit/Papers/re3.pdf
2. If k = 2 this is 2°(")_ If worked out then probably better
than what we got, but not poly.
3. Mousavi, in 2017, showed that any regex for L, has
length at least Q(n(log n)*).
Paper is here: https://arxiv.org/abs/1712.00811
4. If k = 2 this is 2%,
So there is no polysized Regex for L, /5.

https://cs.uwaterloo.ca/~shallit/Papers/re3.pdf
https://cs.uwaterloo.ca/~shallit/Papers/re3.pdf
https://arxiv.org/abs/1712.00811

Prob 4c: CFG for L = {w : |w| = n A #.,(w) = n/2}

Prob 4c: CFG for L = {w : |w| = n A #.,(w) = n/2}

Note that there are |L| = (n'/’z) = @(\2/—%)

Prob 4c: CFG for L = {w : |w| = n A #.,(w) = n/2}

Note that there are |L| = (n'/’z) = @(\2/—%) Let N = (n72)'

Prob 4c: CFG for L = {w : |w| = n A #.,(w) = n/2}

Note that there are |L| = (n72) = @(\2/—"5) Let N = (n'/72).

Let all the strings in L be wy, wo, ..., wy.

Prob 4c: CFG for L = {w : |w| = nA#,(w) =n/2}

Note that there are |L| = (n'/’2) = @(\2/—5) Let N = (n'/72).

Let all the strings in L be wy, wo, ..., wy.
(Vi) G; is CFG for {w;} of size O(n). S; is start sym of G;.

Prob 4c: CFG for L = {w : |w| = nA#,(w) =n/2}

Note that there are |L| = (n'/’2) = @(\2/—5) Let N = (n72)'
Let all the strings in L be wy, wo, ..., wy.

(Vi) G; is CFG for {w;} of size O(n). S; is start sym of G;.
The CFL:

Prob 4c: CFG for L = {w : |w| = n A #,(w) = n/2}

Note that there are |L| = (n'/’2) = @(\2/—5) Let N = (n72)'
Let all the strings in L be wy, wo, ..., wy.
(Vi) G; is CFG for {w;} of size O(n). S; is start sym of G;.
The CFL:

1. Start State is S. For all j add S — §,.

Prob 4c: CFG for L = {w : |w| = n A #,(w) = n/2}

Note that there are |L| = (n72) = @(\2/—5) Let N = (n72)'
Let all the strings in L be wy, wa, ..., wy.
(Vi) G; is CFG for {w;} of size O(n). S; is start sym of G;.
The CFL:

1. Start State is S. For all j add S — §,.

2. Add all of the rules of all of the G;'s.

Prob 4c: CFG for L = {w : |w| = n A #,(w) = n/2}

Note that there are |L| = (n72) = @(\2/—5) Let N = (n72)'
Let all the strings in L be wy, wa, ..., wy.
(Vi) G; is CFG for {w;} of size O(n). S; is start sym of G;.
The CFL:

1. Start State is S. For all j add S — §,.

2. Add all of the rules of all of the G;'s.

N G;'s. Each has O(n) rules. G has

Prob 4c: CFG for L = {w : |w| = n A #,(w) = n/2}

Note that there are |L| = (n72) = @(\2/—5) Let N = (n72)'
Let all the strings in L be wy, wa, ..., wy.
(Vi) G; is CFG for {w;} of size O(n). S; is start sym of G;.
The CFL:

1. Start State is S. For all j add S — §,.

2. Add all of the rules of all of the G;'s.

N G;'s. Each has O(n) rules. G has

O(Nn) = O ((n;’ 2) n) = O(v/n2")rules.

Prob 4c: CFG for L = {w : |w| = n A #,(w) = n/2}

Note that there are |L| = (n72) = @(\2/—5) Let N = (n72)'
Let all the strings in L be wy, wa, ..., wy.
(Vi) G; is CFG for {w;} of size O(n). S; is start sym of G;.
The CFL:

1. Start State is S. For all j add S — §,.

2. Add all of the rules of all of the G;'s.
N G;'s. Each has O(n) rules. G has

n n
O(Nn) = O ((n/2> n) = O(v/n2")rules.
Vote: Poly-known, not-Poly-known, UNK TO BILL.

Prob 4c: CFG for L = {w : |w| = n A #,(w) = n/2}

Note that there are |L| = (n72) = @(\2/—5) Let N = (n72)'
Let all the strings in L be wy, wa, ..., wy.
(Vi) G; is CFG for {w;} of size O(n). S; is start sym of G;.
The CFL:

1. Start State is S. For all j add S — §,.

2. Add all of the rules of all of the G;'s.
N G;'s. Each has O(n) rules. G has

O(Nn) = O ((n;’ 2) n) = O(v/n2")rules.

Vote: Poly-known, not-Poly-known, UNK TO BILL.
Answer on next slide.

Poly Size CFG for L = {w : |w| = nA#.(w) = n/2}

Key Small CFG for L;; = {w : |w| =i A #.(w) = j}

Poly Size CFG for L = {w : |w| = nA#.(w) = n/2}

Key Small CFG for L;; = {w : |w| =i A #.(w) =}
The start symbol for the CFG for L;; will be S; ;.

Poly Size CFG for L = {w : |w| = nA#.(w) = n/2}

Key Small CFG for L;; = {w : |w| =i A #.(w) =}
The start symbol for the CFG for L;; will be S; ;.
1. Lig= {b'}.

Poly Size CFG for L = {w : |w| = nA#,(w) = n/2}

Key Small CFG for L;; = {w : |w| =i A #.(w) =}
The start symbol for the CFG for L;; will be S; ;.
1. Lo = {b'}. CFG-CNF with O(logi) rules.

Poly Size CFG for L = {w : |w| = nA#,(w) = n/2}

Key Small CFG for L;; = {w : |w| =i A #.(w) =}
The start symbol for the CFG for L;; will be S; ;.

1. Lo = {b'}. CFG-CNF with O(logi) rules.

2. L171 = {a}

Poly Size CFG for L = {w : |w| = nA#,(w) = n/2}

Key Small CFG for L;j = {w : |w| = i A #,(w) = j}
The start symbol for the CFG for L;; will be S; ;.

1. Lo = {b'}. CFG-CNF with O(logi) rules.

2. L11 = {a}. CFG-CNF with O(1) rules.

Poly Size CFG for L = {w : |w| = nA#,(w) = n/2}

Key Small CFG for L;j = {w : |w| = i A #,(w) = j}
The start symbol for the CFG for L;; will be S; ;.

1. Lo = {b'}. CFG-CNF with O(logi) rules.

2. L11 = {a}. CFG-CNF with O(1) rules.

3. Lo ={b}.

Poly Size CFG for L = {w : |w| = nA#,(w) = n/2}

Key Small CFG for L;; = {w : |w| =i A #.(w) =}
The start symbol for the CFG for L;; will be S; ;.

1. Lo = {b'}. CFG-CNF with O(logi) rules.

2. L11 = {a}. CFG-CNF with O(1) rules.

3. L1o = {b}. CFG-CNF with O(1) rules.

Poly Size CFG for L = {w : |w| = nA#,(w) = n/2}

Key Small CFG for L;j = {w : |w| = i A #,(w) = j}
The start symbol for the CFG for L;; will be S; ;.

1. Lo = {b'}. CFG-CNF with O(logi) rules.

2. L11 = {a}. CFG-CNF with O(1) rules.

3. L1o = {b}. CFG-CNF with O(1) rules.

4. For2 <i<n,1< </ add the rules:

Poly Size CFG for L = {w : |w| = nA#,(w) = n/2}

Key Small CFG for L;j = {w : |w| = i A #,(w) = j}
The start symbol for the CFG for L;; will be S; ;.
1. Lo = {b'}. CFG-CNF with O(logi) rules.
2. L11 = {a}. CFG-CNF with O(1) rules.
3. L1o = {b}. CFG-CNF with O(1) rules.
4. For2 <i<n,1< </ add the rules:
5,'7J' — 35,',111',1

Poly Size CFG for L = {w : |w| = nA#,(w) = n/2}

Key Small CFG for L;j = {w : |w| = i A #,(w) = j}
The start symbol for the CFG for L;; will be S; ;.
1. Lo = {b'}. CFG-CNF with O(logi) rules.
2. L11 = {a}. CFG-CNF with O(1) rules.
3. L1o = {b}. CFG-CNF with O(1) rules.
4. For2 <i<n,1< </ add the rules:
Sij = aSi—1j-1
5,'J — bS,',l,j

Poly Size CFG for L = {w : |w| = nA#,(w) = n/2}

Key Small CFG for L;; = {w : |w| =i A #.(w) =}
The start symbol for the CFG for L;; will be S; ;.
1. Lo = {b'}. CFG-CNF with O(logi) rules.
2. L11 = {a}. CFG-CNF with O(1) rules.
3. L1o = {b}. CFG-CNF with O(1) rules.
4. For2 <i<n,1< </ add the rules:
Sij—aSi—1j-1
Sij — bSi_1
If Si; is Start then get L; .

Poly Size CFG for L = {w : |w| = nA#,(w) = n/2}

Key Small CFG for L;; = {w : |w| =i A #.(w) =}
The start symbol for the CFG for L;; will be S; ;.
1. Lo = {b'}. CFG-CNF with O(logi) rules.
2. L11 = {a}. CFG-CNF with O(1) rules.
3. L1o = {b}. CFG-CNF with O(1) rules.
4. For2 <i<n,1< </ add the rules:
Sij—aSi—1j-1
5,'J — bS,',l,j
If Si; is Start then get L; .
“l am sure you can all go home and prove that by induction.”

Poly Size CFG for L = {w : |w| = nA#,(w) = n/2}

Key Small CFG for L;; = {w : |w| =i A #.(w) =}
The start symbol for the CFG for L;; will be S; ;.
1. Lo = {b'}. CFG-CNF with O(logi) rules.
2. L11 = {a}. CFG-CNF with O(1) rules.
3. L1o = {b}. CFG-CNF with O(1) rules.
4. For2 <i<n,1< </ add the rules:
Sij—aSi—1j-1
5,'J — bS,',l,j
If Si; is Start then get L; .
“l am sure you can all go home and prove that by induction.”
The Grammar is of size O(n?).

Poly Size CFG for L = {w : |w| = nA#,(w) = n/2}

Key Small CFG for L;; = {w : |w| =i A #.(w) =}
The start symbol for the CFG for L;; will be S; ;.
1. Lo = {b'}. CFG-CNF with O(logi) rules.
2. L11 = {a}. CFG-CNF with O(1) rules.
3. L1o = {b}. CFG-CNF with O(1) rules.
4. For2 <i<n,1< </ add the rules:
Sij—aSi—1j-1
5,'J — bS,',l,j
If Si; is Start then get L; .
“l am sure you can all go home and prove that by induction.”

The Grammar is of size O(n?).
Upshot There is a CFG for L, /> of size O(n?).

Bill's Usual Mantra: RESPECT for Lower Bounds

(I obviously made up these slides before class began, so what |
say here might not be true.)

Bill's Usual Mantra: RESPECT for Lower Bounds

(I obviously made up these slides before class began, so what |
say here might not be true.)
Most of you voted as follows:

Bill's Usual Mantra: RESPECT for Lower Bounds

(I obviously made up these slides before class began, so what |
say here might not be true.)
Most of you voted as follows:

1. Ly did NOT have a poly sized CFG-CNF.

Bill's Usual Mantra: RESPECT for Lower Bounds

(I obviously made up these slides before class began, so what |
say here might not be true.)
Most of you voted as follows:

1. Ly did NOT have a poly sized CFG-CNF.
2. UNK TO BILL

Bill's Usual Mantra: RESPECT for Lower Bounds

(I obviously made up these slides before class began, so what |
say here might not be true.)
Most of you voted as follows:

1. Ly did NOT have a poly sized CFG-CNF.

2. UNK TO BILL
To show that X does not exist you need to show that there
is no clever idea and there is no hard math that will show
that X does exist.

Bill's Usual Mantra: RESPECT for Lower Bounds

(I obviously made up these slides before class began, so what |
say here might not be true.)
Most of you voted as follows:

1. Ly did NOT have a poly sized CFG-CNF.
2. UNK TO BILL

To show that X does not exist you need to show that there
is no clever idea and there is no hard math that will show
that X does exist.

In this case someone clever did come along with a solution.

Bill's Usual Mantra: RESPECT for Lower Bounds

(I obviously made up these slides before class began, so what |
say here might not be true.)
Most of you voted as follows:

1. Ly did NOT have a poly sized CFG-CNF.
2. UNK TO BILL

To show that X does not exist you need to show that there
is no clever idea and there is no hard math that will show
that X does exist.

In this case someone clever did come along with a solution.
When was L, x proven to have a small grammar, and by who?

Bill's Usual Mantra: RESPECT for Lower Bounds

(I obviously made up these slides before class began, so what |
say here might not be true.)
Most of you voted as follows:

1. Ly did NOT have a poly sized CFG-CNF.
2. UNK TO BILL

To show that X does not exist you need to show that there
is no clever idea and there is no hard math that will show
that X does exist.

In this case someone clever did come along with a solution.
When was L, x proven to have a small grammar, and by who?
Bill Gasarch while preparing hw05 in February 2024.

Bill's Usual Mantra: RESPECT for Lower Bounds

(I obviously made up these slides before class began, so what |
say here might not be true.)
Most of you voted as follows:

1. Ly did NOT have a poly sized CFG-CNF.
2. UNK TO BILL

To show that X does not exist you need to show that there
is no clever idea and there is no hard math that will show
that X does exist.

In this case someone clever did come along with a solution.
When was L, x proven to have a small grammar, and by who?
Bill Gasarch while preparing hw05 in February 2024.

No New ldeas: It used Dyanmic Programming.

