\documentclass[12pt,ifthen]{article} \usepackage{amsmath} \usepackage{amssymb} %\usepackage{html} \usepackage{hyperref} \newcommand{\N}{{\sf N}} \newcommand{\Z}{{\sf Z}} \newcommand{\R}{{\sf R}} \newcommand{\into}{{\rightarrow}} \newcommand{\ceil}[1]{\lceil #1 \rceil} \usepackage{amsthm} \newtheorem{theorem}{Theorem} \begin{document} \centerline{\bf Honors Homework 3} \centerline{Morally Due Mon April 1 at 10:00 AM. } \vspace{1cm} Prove using \textbf{Structural Induction}: \begin{enumerate} \item (30 points) Define a set of strings $S$ by \begin{itemize} \item $\epsilon \in S$ \item If $\sigma \in S$, then \begin{itemize} \item $b\sigma \in S$ \item $\sigma b \in S$ \item $\sigma aa \in S$ \item $aa \sigma \in S$ \end{itemize} \end{itemize} Prove that every string in $S$ contains an even number of $a$'s. \item (35 points) Let $S$ be a set of ordered pairs of integers defined recursively by \begin{itemize} \item $(0,0) \in S$ \item If $(a,b) \in S$, then $(a+2,b+3) \in S$ and $(a+3,b+2) \in S$. \end{itemize} Prove $5|a+b$ when $(a,b) \in S$ \item (35 points) Prove by induction that a full binary tree has an odd number of nodes. \end{enumerate} \end{document}