
ObliviStore: High Performance Oblivious Cloud Storage

Emil Stefanov
University of California, Berkeley

emil@cs.berkeley.edu

Elaine Shi
University of Maryland, College Park

elaine@cs.umd.edu

Abstract. We design and build ObliviStore, a high performance,
distributed ORAM-based cloud data store secure in the malicious
model. To the best of our knowledge, ObliviStore is the fastest
ORAM implementation known to date, and is faster by 10X or
more in comparison with the best known ORAM implementation.
ObliviStore achieves high throughput by making I/O operations
asynchronous. Asynchrony introduces security challenges, i.e., we
must prevent information leakage not only through access patterns,
but also through timing of I/O events. We propose various practical
optimizations which are key to achieving high performance, as well
as techniques for a data center to dynamically scale up a distributed
ORAM. We show that with 11 trusted machines (each with a
modern CPU), and 20 Solid State Drives, ObliviStore achieves a
throughput of 31.5MB/s with a block size of 4KB.

I. INTRODUCTION

Cloud computing provides economies of scale for im-
plementing a broad range of online services. However, due
to concerns over data privacy, “many potential cloud users
have yet to join the cloud, and many are for the most part
only putting only their less sensitive data in the cloud” [10].
It is well-known that encryption alone is not sufficient for
ensuring data privacy, since data access patterns can also
leak a considerable amount of sensitive information. For
example, Islam et. al. demonstrate that access patterns can
leak (through statistical inference) up to 80% of the search
queries made to an encrypted email repository [21].

Oblivious RAM (or ORAM for short) [9, 11, 13–16, 18,
23, 28, 29, 31, 43, 46], originally proposed by Goldreich
and Ostrovsky [14], is a cryptographic construction that
allows a client to access encrypted data residing on an
untrusted storage server, while completely hiding the access
patterns to storage. Particularly, the sequence of physical
addresses accessed is independent of the actual data that
the user is accessing. To achieve this, existing ORAM
constructions [9, 11, 13–16, 18, 23, 28, 29, 31, 43, 46]
continuously re-encrypt and and reshuffle data blocks on
the storage server, to cryptographically conceal the logical
access pattern.

Aside from storage outsourcing applications, ORAM (in
combination with trusted hardware in the cloud) has also
been proposed to protect user privacy in a broad range of
online services such as behavioral advertising, location and
map services, web search, and so on [8, 25].

While the idea of relying on trusted hardware and obliv-
ious RAM to enable access privacy in cloud services is
promising, for such an approach to become practical, a
key challenge is the practical efficiency of ORAM. ORAM

was initially proposed and studied mostly as a theoretic
concept. However, several recent works demonstrated the
potential of making ORAM practical in real-world scenar-
ios [25, 40, 46, 47].

A. Our Contributions

We design and build ObliviStore, an efficient ORAM-
based cloud data store, securing data and access patterns
against adversaries in the malicious model. To the best of our
knowledge, ObliviStore is the fastest ORAM implementation
that has ever been built.

Our evaluation suggests that in a single client/server set-
ting with 7 rotational hard disk drives (HDDs), ObliviStore
is an order of magnitude faster than the independent work
PrivateFS by Williams et. al. [47] – with parameters chosen
to best replicate their experimental setup (Section VII-E).

As solid-state drive (SSD) prices drop faster than
HDDs [30], cloud providers and data centers embrace SSD
adoption [4]. In addition to HDDs, we also evaluate Oblivi-
Store with SSDs in a distributed setting on Amazon EC2.
With 11 trusted nodes (each with a modern CPU), we
achieve a throughput of 31.5MB/s with a block size of 4KB.

Our technical contributions include the following:
Making ORAM operations asynchronous. We propose
novel techniques for making the SSS ORAM [40] asyn-
chronous and parallel. We chose the SSS ORAM since it
is one of the most bandwidth efficient ORAM constructions
known to date. Due to ORAM’s stringent security re-
quirements, making ORAM operations asynchronous poses
unique challenges. We must prevent information leakage not
only through access patterns as in traditional synchronous
ORAM, but also through the timing of I/O events. To address
this issue, we are the first to formally define the notion of
oblivious scheduling. We prove that our construction satis-
fies the oblivious scheduling requirement. Particularly, our
ORAM scheduler relies on semaphores for scheduling. To
satisfy the oblivious scheduling requirement, operations on
semaphores (e.g., incrementing, decrementing) must depend
only on information observable by an adversary who is not
aware of the data request sequence.
Distributed ORAM. Typical cloud service providers have
a distributed storage backend. We show how to adapt our
ORAM construction for a distributed setting.

Note that naive methods of partitioning and distributing
an ORAM may violate security. For example, as pointed
out in [40], even if each block is assigned to a random



ORAM node

Client Client Client Client Client

...

Oblivious load balancer

ORAM node ORAM node

PRIVATE CLOUD

UNTRUSTED CLOUD

(a) Scenario 1: private + public cloud.

Client Client Client Client

...

UNTRUSTED CLOUD

Client

Trusted 
hardware

ORAM node

Oblivious load balancer

ORAM node ORAM node

(b) Scenario 2: trusted hardware in the cloud.

Figure 1: Architecture and deployment scenarios.

partition when written, accessing the same block twice in
a row (read after write) can leak sensitive information. Our
distributed ORAM construction applies the SSS partitioning
framework [40] twice to achieve secure partitioning of an
ORAM across multiple servers.

We also propose a novel algorithm for securely scaling
up a distributed ORAM at run-time. Our techniques allow
additions of new processors and storage to an existing
distributed ORAM without causing service interruption. As
mentioned in Section VI, naive techniques for supporting
dynamic node joins can easily break security. Non-trivial
techniques are therefore required to securely handle dynamic
node joins.

Practical optimizations. ObliviStore is designed to take
into account many practical considerations (see full ver-
sion [39]). For example, we use batch shuffling to boost the
parallelism of the construction (Section V-C). We reorder
and coalesce asynchronous I/O requests to storage to opti-
mize the number of seeks on rotational drives.). We achieve
parallelism through asynchronous operations with callbacks
(rather than using more threads) to reduce thread scheduling
contention. Read accesses have higher scheduling priority
to minimize blocking on shuffling I/O’s, and hence result
in a lower overall response time, yet we make sure that the
shuffling always keeps up with the accesses (Section V-D).

In ObliviStore, our oblivious load balancer stores about 4
bytes of metadata per data block. While the metadata size is
linear in theory, its practice size is typically comparable to or
smaller than storing O(

√
N) data blocks. For theoretic inter-

est, with suitable modifications to the scheme, it is possible
to achieve sublinear client storage by recursively outsourcing
the metadata to the untrusted storage as well [25, 35, 40].
In practice, however, the recursion depth is typically 1 to 3
(see [25, 35]) — we use a value of 1, i.e., no recursion.

II. ARCHITECTURE AND TRUST MODEL

Abstractly, all ORAM schemes assume a trusted client,
and an untrusted storage provider. In our distributed ORAM,
the trusted client consists of an oblivious load balancer and
multiple ORAM nodes – we will explain the role of each in
detail in Section VI. In practice, this means that we need
to trust the part of the software implementing the oblivious
load balancer and ORAM nodes. However, the rest of the
system need not be trusted – specifically, we do not trust the
network, the storage arrays, or the remainder of the software
stack (other than the part that implements the oblivious load
balancer and ORAM node algorithms).

ObliviStore is designed with two primary deployment
scenarios in mind (Figure 1). The 1st scenario (hybrid cloud)
is immediately deployable today, and PrivateFS [47] also
considers a similar scenario. While the 2nd scenario (trusted
hardware in the cloud) may not be immediately practical
today, we envision it as a promising direction for building
future privacy-preserving cloud services.

Hybrid cloud. One deployment scenario is corporate storage
outsourcing. Suppose a company or government agency
would like to outsource or backup its databases or file
systems to untrusted cloud storage providers. In these cases,
they may wish to separate the trusted components from the
untrusted components, and host the trusted components in
a private cloud in house, while outsourcing the untrusted
storage to remote cloud providers. For example, Zhang et.
al. [48] and others [41] describe such a hybrid cloud
scenario in their paper. With ObliviStore, the oblivious load
balancer and the ORAM nodes would reside in house, while
the storage is provided by untrusted cloud providers. This
scenario is also similar to that considered by Williams et.
al. in their PrivateFS system [47].

Trusted hardware in the cloud. We envision a sec-
ond deployment strategy as a promising direction to build
a next generation of privacy-preserving cloud services.



ObliviAd [8] and Shroud [25] consider a similar scenario.
In various online services such as behavioral advertising

and web search, access patterns reveal a great deal of
sensitive information. For example, retrieving information
about a certain drug can reveal a users medical condition;
and retrieving information about a restaurant in New York
can reveal the user’s current location.

Several prior works [7, 8, 20, 25, 37, 43] have outlined
the vision using trusted hardware [2, 5] to establish a
“trust anchor” [34] in the cloud, which in turn relies on
Oblivious RAM to retrieve data from untrusted storage while
providing access privacy. For example, in S & P’12, Backes
et. al. [8], propose to use Oblivious RAM in combination
with trusted hardware, to ensure access privacy in online
behavioral advertising. We can rely on Trusted Platform
Modules (TPMs) [5, 26, 27] or secure co-processors [36, 38]
to establish a Trusted Computing Base (TCB) at the cloud
service provider. To achieve scalability, a distributed TCB is
needed, and can be established through techniques such as
in Excalibur [33].

In this scenario, our ORAM load balancer and ORAM
node algorithms will be implemented as part of the dis-
tributed TCB, and will be in charge of encryption and pri-
vatizing access patterns. Other than the TCB, the remainder
of the software stack on the cloud is untrusted. Existing
work has also discussed how minimize the TCB to reduce
the attack surface, and in some cases make it amenable to
formal verification [22, 24, 42].

Using TPMs and Trusted Computing, we expect the dis-
tributed ORAM performance to be similar to the evaluations
shown in this paper, since Trusted Execution imposes rela-
tively small computational overhead. Moreover, this work
shows that computation is not the bottleneck for ObliviStore
when implemented on modern processors. On the other
hand, off-the-shelf secure co-processors such as IBM 4768
may offer the additional benefit of physical security – but
they are constrained (e.g., in terms of chip I/O, computation
power, and memory) and would thus pose a bottleneck for
an ORAM implementation, as demonstrated by Lorch et.
al. [25]. However, it is conceivable that high performance
secure co-processors suitable for ORAM can be built [12].

III. PRELIMINARIES

A. Partitioning Framework

Stefanov, Shi, and Song propose a new paradigm for
constructing practical ORAM schemes [40], consisting of
two main techniques, partitioning and eviction. Through
partitioning, they divide a bigger ORAM instance into
multiple smaller ORAM instances. Let N denote the total
ORAM capacity. The ORAM server storage is divided into
O(
√
N) partitions, each with capacity O(

√
N).

At any point of time, a block resides in a random partition.
The client stores a local position map to keep track of
which partition each block resides in. To access a block

The partitioning framework [40]
// Divide the ORAM into

√
N partitions each of capacity

√
N .

Read(blockid):
• Look up position map and determine that blockid is assigned

to partition p.
• If blockid is not found in eviction caches:

– ReadPartition(p, blockid)

Else if blockid is found in local eviction caches:
– ReadPartition(p,⊥) //read dummy

• Pick a random partition p′, add the block identified by blockid
to the eviction caches, and logically assign blockid to partition
p′.

• Call Evict ν times where ν > 1 is the eviction rate.

Evict:
• Pick a random partition p.
• If a block exists in the eviction cache assigned to partition p,

write it back to partition p of the server.
• Else, write a dummy block to partition p of the server.

Figure 2: The partitioning framework [40]. The
Write(blockid, block) operation is omitted, since it is similar
to Read(blockid), except that the block written to the eviction
cache is replaced with the new block.

B, the client first looks up this position map to determine
the partition id p; then the client makes an ORAM call to
partition p and looks up block B. On fetching the block
from the server, the client logically assigns it to a freshly
chosen random partition – without writing the block to the
server immediately. Instead, this block is temporarily cached
in the client’s local eviction cache.

A background eviction process evicts blocks from the
eviction cache back to the server in an oblivious manner.
One possible eviction strategy is random eviction: with every
data access, randomly select 2 partitions for eviction. If
there exists a block in the eviction cache that is assigned
to the chosen partition, evict a real block; otherwise, evict a
dummy block to prevent information leakage.

The basic SSS ORAM algorithm is described in Figure 2.
Stefanov et. al. prove that the client’s eviction cache load
is bounded by O(

√
N) with high probability. While the

position map takes asymptotically O(N) space to store, in
real-world deployments, the position map is typically small
(e.g., less than 2.3 GB as shown in Table IV) and smaller
than or comparable to the size of the eviction cache. For
theoretic interest, it is possible to store the position map
recursively in a smaller ORAM on the server, to reduce the
client’s local storage to sub-linear – although this is rarely
necessary in practice.

B. Synchronous Amortized Shuffling Algorithm

The basic SSS construction as shown in Figure 2 employs
for each partition an ORAM scheme (referred to as the
partition ORAM) based on the original hierarchical construc-
tion by Goldreich and Ostrovsky [14], and geared towards
optimal practical performance.

Such a partition ORAM requires periodic shuffling oper-



ations: every 2i accesses to a partition ORAM, 2i blocks
need to be reshuffled for this partition ORAM. Reshuffling
can take O(

√
N) time in the worst case, and all subsequent

data access requests are blocked waiting for the reshuffling
to complete.

Therefore, although the basic SSS construction has
O(logN) amortized cost (non-recursive version), the worst-
case cost of O(

√
N) makes it undesirable in practice. To

address this issue, Stefanov et. al. propose a technique that
spreads the shuffling work across multiple data accesses, to
avoid the poor worst-case performance.

On a high level, the idea is for the client to maintain
a shuffling job queue which keeps track of partitions that
need to be reshuffled, and the respective levels that need to
be reshuffled. A scheduler schedules O(logN) amount of
shuffling work to be performed with every data access.

Stefanov et. al. devise a method for data accesses to
nonetheless proceed while a partition is being shuffled, or
pending to be reshuffled. Suppose that the client needs to
read a block from a partition that is currently being shuffled
or pending to be shuffled. There are two cases:

Case 1. The block has been fetched from the server
earlier, and exists in one of the local data structures: the
eviction cache, the shuffling buffer, or the storage cache. In
this case, the client looks up this block locally. To prevent
information leakage, the client still needs to read a fake
block from every non-empty level in the server’s partition.
Specifically,
• For levels currently marked for shuffling, the client

prefetches a previously unread block which needs to be
read in for reshuffling (referred to as an early cache-in)
– unless all blocks in that level have been cached in.

• For levels currently not marked for shuffling, the client
requests a dummy block, referred to as a dummy cache-
in.

Case 2. The block has not been fetched earlier, and resides
in the server partition. In this case, the client reads the real
block from the level where the block resides in, and for
every other non-empty level, the client makes a fake read
(i.e., early cache-in or dummy cache-in), using the same fake
read algorithm described above.

IV. FORMAL DEFINITIONS

Traditional ORAMs assume synchronous I/O operations,
i.e., I/O operations are blocking, and a data request needs
to wait for a previous data request to end. To increase
the amount of I/O parallelism, we propose to make I/O
operations asynchrnous in ORAMs, namely, there can be
multiple outstanding I/O requests, and completion of I/O
requests are handled through callback functions.

Making ORAM operations asynchronous poses a security
challenge. Traditional synchronous ORAM requires that the
physical addresses accessed on the untrusted storage server
must be independent of the data access sequence.

In asynchronous ORAM, the security requirement is com-
plicated by the fact that the scheduling of operations is no
longer sequential or blocking. There can be many ways to
schedule these operations, resulting in variable sequences of
server-observable events (e.g., I/O requests). Not only must
the sequence of addresses accessed be independent of the
data access sequence, so must the timing of these events.

We now formally define asynchronous (distributed) Obliv-
ious RAM. For both the non-distributed and distributed
case, we first define the set of all network or disk I/O
events (including the timing of the events) observable by
an adversary. The security definition or an asynchronous
(distributed) ORAM intuitively says that the set of events
observable by the adversary should not allow the adversary
to distinguish two different data request sequences of the
same length and timing.

Asynchronous ORAM. An asynchronous ORAM consists
of a client, a server, and a network intermediary. Let seq
denote a data access sequence:

seq := [(blockid1, t1), (blockid2, t2), . . . , (blockidm, tm)]

where each blockidi denotes a logical block identifier, and
each ti denotes the time of arrival for this request. Given
any data access sequence seq, the ORAM client interacts
with the server to fetch these blocks. Let

events := [(addr1, τ1), (addr2, τ2), . . . , (addrc, τc)] (1)

denote the event sequence resulting from a data access
sequence, where each addri denotes a requested physical
address on the server storage, and τi denotes the time at
which the request is sent from the client.

We assume that the network and the storage are both under
the control of the adversary, who can introduce arbitrary
delays of its choice in packet transmissions and responses
to requests.

Distributed asynchronous ORAM. A distributed asyn-
chronous ORAM consists of multiple distributed trusted
components which can communicate with each other, and
communicate with untrusted storage servers. The adversary
is in control of the storage servers, as well as all network
communication. Although in practice, the storage servers
are typically also distributed, for the security definitions
below, we consider all untrusted storage servers as a unity
– since they are all controlled by the adversary. In this
section, we consider the abstract model of distributed asyn-
chronous ORAM, while possible real-world instantiations
are described in Section VI.

For a distributed asynchronous ORAM, We can define
the sequence of all events to be composed of 1) all I/O
requests (and their timings) between a trusted component to
the untrusted storage; and 2) all (encrypted) messages (and



states
Partition

ReadPartition(partition,
blockId)

Semaphores Eviction cache

Storage cache

Fetch(blockId)

Store(partition, block)decrement

decrement
increment

Fetch(addr)CacheIn(addr)
Fetch(addr)
Store(addr, block)

CacheIn(addr)
CacheOut(addr,block)

increment

Read(blockId)

Write(blockId, block)
ORAM Main

Partition Reader Background shuffler

server

client

Fetch(partition)

Figure 3: Overview of asynchronous ORAM algorithm. Solid
arrows: synchronous calls. Dotted arrows: asynchronous calls.

their timings) between two trusted components:

events :=

[
(addr1, τ1, κ1), (addr2, τ2, κ2), . . . , (addrc, τc, κc),
(m1, τ̃1, κ1, κ

′
1), (m2, τ̃2, κ2, κ

′
2), . . . , (md, τ̃d, κd, κ

′
d)

]
(2)

where (addri, τi, κi) denotes that trusted component κi
requests physical address addri from untrusted storage at
time τi; and (mi, τ̃i, κi, κ

′
i) denotes that trusted component

κi sends an encrypted message m to trusted component κ′i
at time τ̃i.

Similarly to the non-distributed case, we say that a dis-
tributed asynchronous ORAM is secure, if an adversary (in
control of the network and the storage) cannot distinguish
any two access sequences of the same length and timing
from the sequence of observable events.

Definition 1 (Oblivious accesses and scheduling). Let seq0

and seq1 denote two data access sequences of the same
length and with the same timing:

seq0 := [(blockid1, t1), (blockid2, t2), . . . , (blockidm, tm)] ,
seq1 :=

[
(blockid′1, t1), (blockid′2, t2), . . . , (blockid′m, tm)

]
Define the following game with an adversary who is in
control of the network and the storage server:
• The client flips a random coin b.
• Now the client runs distributed asynchronous ORAM

algorithm and plays access sequence seqb with the
adversary.

• The adversary observes the resulting event sequence and
outputs a guess b′ of b.

We say that a (distributed) asynchronous ORAM is se-
cure, if for any polynomial-time adversary, for any two
sequences seq0 and seq1 of the same length and timing,∣∣Pr[b′ = b]− 1

2

∣∣ ≤ negl(λ). where λ is a security parameter,
and negl is a negligible function. Note that the set of
events observed by the adversary in the non-distributed and
distributed case are given in Equations 1 and 2 respectively.

V. ASYNCHRONOUS ORAM CONSTRUCTION

We now describe how to make the SSS ORAM asyn-
chronous. This section focuses on the non-distributed case
first. The distributed case is described in the next section.

Table II: Data structures used in ObliviStore
Data structure Purpose
eviction cache Temporarily caches real reads before eviction.
position map Stores the address for each block, including

which partition and level each block resides
in.

storage cache Temporarily stores blocks read in from server
for shuffling, including early cache-ins and
shuffling cache-ins. Also temporarily stores
blocks after shuffling intended to be written
back to the server.

shuffling buffer Used for locally permuting data blocks for
shuffling.

partition states stores the state of each partition, including
which levels are filled, information related to
shuffling, and cryptographic keys.

A. Overview of Components and Interfaces

As shown in Figure 3, our basic asynchronous ORAM
has three major functional components, the ORAM main
algorithm, the partition reader, and the background shuffler.
ORAM main. ORAM main is the entry point to the ORAM
algorithm, and takes in asynchronous calls of the form
Read(blockid) and Write(blockid, block). Response to
these calls are passed through callback functions.

The ORAM main handler looks up the position map to de-
termine which partition the requested block resides in, calls
the partition reader to obtain the block asynchronously, and
places the block in a freshly chosen random eviction cache.
If the request is a write request, the block is overwritten
with the new data before being placed in the eviction cache.
The ORAM main handler then updates the position map
accordingly.
Partition reader. The partition reader is chiefly in
charge of reading a requested block from a chosen
partition. It takes in asynchronous calls of the form
ReadPartition(partition, blockid), where responses are
passed through callback functions.
Background shuffler. The background shuffler is in charge
of scheduling and performing the shuffling jobs. Details of
the background shuffler will be presented in Section V-E.

B. Data Structures and Data Flow

Table II summarizes the data structures in our ORAM
construction, including the eviction cache, position map,
storage cache, shuffling buffer, and partition states.

Informally, when a block is read from the server, it is
first cached by the storage cache. Then, this block is either
directly fetched into the shuffling buffer to be reshuffled; or
it is passed along through the partition reader to the ORAM
main handler, as the response to a data access request. The
ORAM main handler then adds the block to an eviction
cache, where the block will reside for a while before being
fetched into the shuffling buffer to be reshuffled. Reshuffled
blocks are then written back to the server asynchronously
(unless they are requested again before being written back).



Table I: Types of cache-ins: when and for what purposes blocks are being read from the server.
Type of cache-in Explanation
Early cache-in [Partition reader] Early cache-in is when the client reads a block needed for shuffling over a normal data

access. Specifically, when the partition reader tries to read a block from a partition that is currently being
shuffled: if a level being shuffled does not contain the requested block, or contains the requested block but the
requested block has already been cached in earlier, the client caches in a previously unread block that needs
to be read for shuffling. The block read could be real or dummy.

Shuffling cache-in [Background shuffler] Shuffling cache-in is when a block is read in during a shuffling job.
Dummy cache-in [Partition reader] During a normal data access , if a level is currently not being shuffled, and the requested

block does not reside in this level, read the next dummy block from a pseudo-random location in this level.
Real cache-in [Partition reader] During a normal data access, if the intended block resides in a certain level, and this block

has not been cached in earlier, read the real block.

Below we explain the storage cache in more detail.
The partition states will be explained in more detail in
Section V-C. The remaining data structures in Table II have
appeared in the original SSS ORAM.
Storage cache. Blocks fetched from the server are temporar-
ily stored in the storage cache, until they are written back to
the server. The storage cache supports two asynchronous
operations, i.e., CacheIn(addr) and CacheOut(addr).
Upon a CacheIn request, the storage cache reads from the
server a block from address addr, and temporarily stores this
block till it is cached out. Upon a CacheOut request, the
storage cache writes back to the server a block at address
addr, and erases the block from the cache.

Blocks are re-encrypted before being written back to
the storage server, such that the server cannot link blocks
based on their contents. The client also attaches appropriate
authentication information to each block so it can later
verify its integrity, and prevent malicious tampering by the
untrusted storage (see full version [39]).

Additionally, the storage cache also supports
two synchronous operations, i.e., Fetch(addr) and
Store(addr, block), allowing the caller to synchronously
fetch a block that already exists in the cache, or to
synchronously store a block to the local cache.

There are 4 types of cache-ins, as described in Table I.

C. ORAM Partitions

Each partition is a smaller ORAM instance by itself. We
employ a partition ORAM based on the hierarchical con-
struction initially proposed by Goldreich and Ostrovsky [14],
and specially geared towards optimal practical performance.
Each partition consists of 1

2 logN + 1 levels, where level
i can store up to 2i real blocks, and 2i or more dummy
blocks.

For each ORAM partition, the client maintains a set of
partition states as described below.
Partition states. Each partition has the following states:
• A counter Cp. The value of Cp ∈ [0, partition capacity)

signifies the state of partition p. Specifically, let Cp :=∑
i bi ·2i denote the binary representation of the counter

Cp corresponding to partition p. This means that the state

of the partition p should be as below: 1) for every non-
zero bit bi, level i of the partition is filled on the server;
and 2) for every bit bi = 0, level i is empty.

• Job size Jp, which represents how many blocks (real or
dummy) are scheduled to be written to this partition in
the next shuffle. Jp is incremented every time a partition
p is scheduled for an eviction. Notice that the actual
eviction and the associated shuffling work may not take
place immediately after being scheduled.

• A bit bShuffle, indicating whether this partition is cur-
rently being shuffled.

• Dummy counters. Each partition also stores a dummy
block counter for each level, allowing a client to read
the next a previously unread dummy block (at a pseudo-
random address).

• Read/unread flags. For every non-empty level, we store
which blocks remain to be read for shuffling.

Batch shuffling. In the SSS ORAM algorithm [40], a new
shuffling job is created whenever a block is being written to
a partition – as shown in Figure 4 (left). The SSS algorithm
performs these shuffling jobs sequentially, one after another.
Notice that a new shuffling job can be created while the
corresponding partition is still being shuffled. Therefore, the
SSS algorithm relies on a shuffling job queue to keep track
of the list of pending shuffling jobs.

As a practical optimization, we propose a method to batch
multiple shuffling jobs together (Figure 4 – right). When
a shuffling job is being started for a partition p, let Cp

denote the current partition counter. Recall that the binary
representation of Cp determines which levels are filled for
partition p. Let Jp denote the current job size for partition
p. This means that upon completion of this shuffling, the
partition counter will be set to Cp + Jp. Furthermore, the
binary representation of Cp+Jp determines which levels are
filled after the shuffling is completed. The values of Cp and
Jp at the start of the shuffling job jointly determine which
levels need to be read and shuffled, and which levels to be
written to after the shuffling. Figure 4 (right) shows the idea
behind batch shuffling.

New blocks can get scheduled to be evicted to partition
p before its current shuffling is completed. ObliviStore does



Figure 4: Batch shuffling – a new optimization technique for
grouping multiple shufflings into one.

not try to cancel the current shuffling of partition p to
accommodate the newly scheduled eviction. Instead, we
continue to finish the current shuffling, and effectively queue
the newly scheduled evictions for later shuffling. To do this,
at the start of each shuffling, we i) take a snapshot of the job
size: Ĵp ← Jp; and ii) set Jp ← 0. This way, we can still
use Jp to keep track of how many new blocks are scheduled
to be evicted to partition p, even before the current shuffling
is completed.

D. Satisfying Scheduling Constraints with Semaphores

Our asynchronous ORAM construction must decide how
to schedule various operations, including when to serve data
access requests, how to schedule shufflings of partitions, and
when to start shuffling jobs.
Constraints. We wish to satisfy the following constraints
when scheduling various operations of the ORAM algorithm.
• Client storage constraint. The client’s local storage

should not exceed the maximum available amount. Par-
ticularly, there should not be too many early reads,
shuffling reads, or real reads.

• Latency constraint. Data requests should be serviced
within bounded time. If too many shuffling jobs are in
progress, there may not be enough client local storage to
serve a data access request, causing it to be delayed.

Semaphores. To satisfy the aforementioned scheduling con-
straints different components rely on semaphores to coordi-
nate with each other. In our ORAM implementation, we use
four different types of semaphores, where each type indicates
the availability of a certain type of resource.
1) early cache-ins semaphore, indicating how many remain-

ing early cache-ins are allowed,
2) shuffling buffer semaphore, indicating how many more

blocks the shuffling buffer can store,
3) eviction semaphore, indicating how much data access is

allowed to stay ahead of shuffling. This semaphore is
decremented to reserve “evictions” as a resource before
serving a data access request; and is incremented upon
the eviction of a block (real or dummy) from the eviction
cache.

4) shuffling I/O semaphore, indicating how much more I/O
work the background shuffler is allowed to perform. This
semaphore defines how much the shuffler is allowed to

stay ahead of the normal data accesses, and prevents too
much shuffling work from starving the data accesses.

Among the above semaphores, the early cache-in, shuf-
fling buffer, and eviction semaphores are meant to bound the
amount of client-side storage, thereby satisfying the client
storage constraint. For early cache-ins and shuffling cache-
ins, we bound them by directly setting a limit on the cache
size, i.e., how many of them are allowed to be concurrently
in the cache. The eviction semaphore mandates how much
data accesses are allowed to stay ahead of shuffling – this
in some sense is bounding the number of real blocks in the
eviction cache. As explained later, due to security reasons,
we cannot directly set an upper bound on the eviction
cache size as in the early cache-in and shuffling buffer
semaphores. Instead, we bound the number of real blocks
indirectly by pacing the data accesses to not stay too much
ahead of shuffling work. Finally, the shuffling I/O semaphore
constrains how much shuffling I/O work can be performed
before serving the next data access request. This is intended
to bound the latency of data requests.
Preventing information leakage through semaphores.
One challenge is how to prevent information leakage through
semaphores. If not careful, the use of semaphores can
potentially leak information. For example, when reading
blocks from the server, some blocks read are dummy, and
should not take space on the client-side to store. In this
sense, it may seem that we need to decrement a semaphore
only when a real block is read from the server. However,
doing this can potentially leak information, since the value
of the semaphore influences the sequence of events, which
the server can observe.
Invariant 1 (Enforcing oblivious scheduling). To satisfy
the oblivious scheduling requirement, we require that the
values of semaphores must be independent of the data
access sequence. To achieve this, operations on semaphores,
including incrementing and decrementing, must depend only
on information observable by an outside adversary who does
not now the data request sequence.

For example, this explains why the eviction semaphore
does not directly bound the eviction cache size as the early
cache-in and shuffling buffer semaphores do – since other-
wise the storage server can potentially infer the current load
of the eviction cache, thereby leaking sensitive information.
To address this issue, we design the eviction semaphore
not to directly bound the amount of eviction cache space
available, but to pace data accesses not to stay too much
ahead of shuffling. The SSS paper theoretically proves that
if we pace the data accesses and shuffling appropriately,
the eviction cache load is bounded by O(

√
N) with high

probability.

E. Detailed Algorithms
The ORAM main, partition reader, and background shuf-

fler algorithms are detailed in Figures 5, 6, and 7 re-



spectively. We highlighted the use of semaphores in bold.
Notice that all semaphore operations rely only on publicly
available information, but not on the data request sequence –
both directly or indirectly. This is crucial for satisfying the
oblivious scheduling requirement, and will also be crucial
for the security proof in the full version [39].

F. Security Analysis: Oblivious Scheduling

We now formally show that both the physical addresses
accessed and the sequence of events observed by the server
are independent of the data access sequence.
Theorem 1. Our asynchronous ORAM construction satisfies
the security notion described in Definition 1.

In the full version [39], we formally show that an adver-
sary can perform a perfect simulation of the scheduler with-
out knowledge of the data request sequence. Specifically,
both the timing of I/O events and the physical addresses
accessed in the simulation are indistinguishable from those
in the real world.

VI. DISTRIBUTED ORAM

One naive way to distribute an ORAM is to have a
single trusted compute node with multiple storage partitions.
However, in this case, the computation and bandwidth
available at the trusted node can become a bottleneck as
the ORAM scales up. We propose a distributed ORAM that
distributes not only distributes storage, but also computation
and bandwidth.

Our distributed ORAM consists of an oblivious load
balancer and multiple ORAM nodes. The key idea is to
apply the partitioning framework (Section III) twice. The
partitioning framework was initially proposed to reduce the
worst-case shuffling cost in ORAMs [35, 40], but we observe
that we can leverage it to securely perform load balancing
in a distributed ORAM. Specifically, each ORAM node is a
“partition” to the oblivious load balancer, which relies on the
partitioning framework to achieve load balancing amongst
multiple ORAM nodes. Each ORAM node has several stor-
age partitions, and relies on the partitioning framework again
to store data blocks in a random storage partition with every
data access. One benefit of the distributed architecture is that
multiple ORAM nodes can perform shuffling in parallel.

A. Detailed Distributed ORAM Construction

To access a block, the oblivious load balancer first looks
up its position map, and determines which ORAM node is
responsible for this block. The load balancer than passes the
request to this corresponding ORAM node. Each ORAM
node implements a smaller ORAM consisting of multiple
storage partitions. Upon obtaining the requested block, the
ORAM node passes the result back to the oblivious load bal-
ancer. The oblivious load balancer now temporarily places
the block in its eviction caches. With every data access, the
oblivious load balancer chooses ν random ORAM nodes and

evicts one block (possibly real or dummy) to each of them,
through an ORAM write operation.

Each ORAM node also implements the shuffling function-
alities as described in Section V. In particular, the ORAM
nodes can be regarded as a parallel processors capable
of performing reshuffling in parallel. The oblivious load
balancer need not implement any shuffling functionalities,
since it does not directly manage storage partitions. Hence,
even though the load balancer is a central point, its function-
ality is very light-weight in comparison with ORAM nodes
which are in charge of performing actual cryptographic and
shuffling work.

Notice that each ORAM node may not be assigned an
equal amount of storage capacity. In this case, the probability
of accessing or evicting to an ORAM node is proportional to
the amount of its storage capacity. For ease of explanation,
we assume that each storage partition is of equal size,
and that each ORAM node may have different number of
partitions – although in reality, we can also support partitions
of uneven sizes in a similar fashion.

Theorem 2. Our distributed asynchronous ORAM construc-
tion satisfies the security notion described in Definition 1.

Proof: (sketch.) Similar to that of Theorem 1. Both the
oblivious load balancer and the ORAM node algorithms are
perfectly simulatable by the adversary, without having to
observe the physical addresses accessed. The detailed proof
is in the full version [39].

B. Dynamic Scaling Up

Adding compute nodes. When a new ORAM node proces-
sor is being added to the system (without additional storage),
the new ORAM node processor registers itself with the load
balancer. The load balancer now requests existing ORAM
nodes to hand over some of their existing their partitions
to be handled by the new processor. To do this, the ORAM
nodes also need to hand over part of their local metadata
to the new processor, including part of the position maps,
eviction caches, and partition states. The load balancer also
needs to update its local metadata accordingly to reflect the
fact that the new processor is now handling the reassigned
partitions.
Adding compute nodes and storage. The more difficult
case is when both new processor and storage are being added
to the system. One naive idea is for the ORAM system
to immediately start using the new storage as one or more
additional partitions, and allow evictions to go to the new
partitions with some probability. However, doing so would
result in information leakage. Particularly, when the client is
reading the new partition for data, it is likely reading a block
that has been recently accessed and evicted to this partition.

We propose a new algorithm for handling addition of
new ORAM nodes, including processor and storage. When a
new ORAM node joins, the oblivious load balancer and the



ORAM main loop:
• Decrement the early cache-in semaphore by the number of levels. // Reserve space for early cache-ins.
• Decrement the eviction semaphore by eviction rate. // Evictions must be performed later to release the ”eviction resource”.
• Fetch the next data access request for blockid, look up the position map to determine that blockid is assigned to partition p.
• Call ReadPartition(p, blockid).
• On callback:

– Store the block to the eviction cache (overwrite block if this is an ORAM write request).
– Let ν denote the eviction rate. Choose ν partitions at random for eviction, by incrementing their respective job sizes: Jp ← Jp+1

// If ν is a floating number, choose at least ν partitions on average.

Figure 5: ORAM main algorithm.

ReadPartition(p∗, blockid):
1) Looks up the position map to determine the level `∗ where blockid resides. If the requested block is a dummy or blockid is not

found in partition p∗, then set `∗ ← ⊥.
2) For each level in partition p∗ that satisfies one of the following conditions: increment early cache-in semaphore by 1:
• the level is empty;
• the level is not marked for shuffling; or
• the level is marked for shuffling but all blocks have been cached in.

3) For each filled level ` in partition p∗:
• If ` = `∗, ReadReal(`, blockid). Else, ReadFake(`).

ReadReal(`, blockid):
• If blockid has been cached in:

– Call ReadFake(`)
– On completion of the fake (i.e., dummy or early) cache-in: return contents

of blockid through callback. /* To prevent timing channel leakage, must
wait for fake cache-in to complete before returning the block to ORAM
main. */

• Else:
– Cache in block blockid from server.
– On completion of cache-in, return contents of blockid through callback.

ReadFake(`):
• If level ` is not being shuffled:

– Get address addr of next random dummy
block.

– Cache in the dummy block at addr.
• If level ` is being shuffled, and level ` has unread

blocks,
– Perform an early cache-in.

• Else return with ⊥.

Figure 6: Partition reader algorithm.

new ORAM node jointly build up new storage partitions. At
any point of time, only one storage partition is being built.
Building up a new storage partition involves:

• Random block migration phase. The load balancer
selects random blocks from existing partitions, and
migrates them to the new partition. The new partition
being built is first cached in the load balancer’s local
trusted memory, and it will be sequentially written out
to disk when it is ready. This requires about O(

√
N/D)

amount of local memory, where N is the total storage
capacity, and D is the number of ORAM nodes.
During the block migration phase, if a requested block
resides within the new partition, the load balancer
fetches the block locally, and issues a dummy read
to a random existing partition (by contacting the cor-
responding ORAM node). Blocks are only evicted to
existing partitions until the new partition is fully ready.

• Marking partition as ready. At some point, enough
blocks would have been migrated to the new partition.
Now the load balances sequentially writes the new
partition out to disk, and marks this partition as ready.

• Expanding the address space. The above two steps mi-
grate existing blocks to the newly introduced partition,
but do not expand the capacity of the ORAM. We need

to perform an extra step to expand ORAM’s address
space.
Similarly, the challenge is how to do this securely.
Suppose the old address space is [1, N ], and the new
address space after adding a partition is [1, N ′], where
N ′ > N . One naive idea is to randomly add each block
in the delta address space [N + 1, N ′] to a random
partition. However, if the above is not an atomic opera-
tion, and added blocks become immediately accessible,
this can create an information leakage. For example,
after the first block from address space [N + 1, N ′]
has been added, at this time, if a data access request
wishes to fetch the block added, it would definitely visit
the partition where the block was added. To address
this issue, our algorithm first assigns each block from
address space [N + 1, N ′] to a random partition –
however, at this point, these blocks are not accessible
yet. Once all blocks from address space [N + 1, N ′]
have been assigned, the load balancer notifiers all
ORAM nodes, and at this point, these additional blocks
become fully accessible.

Initially, a new ORAM node will have 0 active partitions.
Then, as new storage partitions get built, its number of active
partitions gradually increases. Suppose that at some point



Background shuffler loop:
1) Start shuffling.
• Find a partition p whose bShuffle indicator is 0 and job size Jp > 0. Start the shuffling of partition p.
• Set bShuffle← 1 for partition p. // Each partition can only have one active shuffling job at a time.
• Mark levels for shuffling.
• Take a snapshot of the partition job size Ĵp ← Jp.

2) Cache-in and reserve space.
• For each unread block B in each level marked for shuffling:

– Decrement: 1) shuffling buffer semaphore, and 2) shuffling I/O semaphore;
– Issue a CacheIn request for B.

• Let r denote the number of reserved slots in shuffling buffer so far. Let w denote the number of cache-outs that will be performed
after this partition is shuffled. Note that r ≤ w.
Decrement the shuffling buffer semaphore by w − r.
// Reserve space in shuffling buffer for early cache-ins, unevicted blocks, and dummy blocks.

3) Upon completion of all cache-ins, perform atomic shuffle.
/* Since computation is much cheaper than bandwidth or latency, we assume that the local shuffle is done atomically. */
• Fetch.

– Fetch from the storage cache all cached-in blocks for levels marked for shuffling. For each cache-in fetched that is an early
cache-in, increment the early cache-in semaphore.
// These early cache-ins are now accounted for by the shuffling buffer semaphore.

– Let Ĵp denote the job size at the start of this shuffling. Fetch Ĵp blocks from the eviction cache corresponding to the
partition. Increment eviction cache semaphore by Ĵp.
/* If fewer than Ĵp blocks for this partition exists in the eviction cache, the eviction cache returns dummy blocks to pad.
These unevicted cache blocks are now accounted for by the shuffling buffer semaphore. */

• Shuffle.
– Add dummies to the shuffling buffer to pad its size to w.
– Permute the shuffling buffer.

• Store.
– Store shuffled blocks into storage cache: for each level `, store exactly 2 · 2` blocks from the shuffling buffer (at least half

of which are dummy). Mark destination levels as filled.
• Unmark levels for shuffling. Set partition counter Cp ← (Cp + Ĵp) mod partition capacity. Clear bShuffle← 0.

4) Cache-out.
• For each block B to be cached out:

– Decrement the shuffling I/O semaphore.
– Issue a CacheOut call for block B.

• On each cache-out completion: increment the shuffling buffer semaphore.

Figure 7: Background shuffler algorithm.

of time, each existing ORAM node has c1, c2, . . . , cm−1
partitions respectively, and the newly joined ORAM node
has cm active partitions, while one more partition is being
built. Suppose all partitions are of equal capacity, then the
probability of evicting to each active partition should be
equal. In other words, the probability of evicting to the i’th
ORAM node (where i ∈ [m]) is proportional to ci.

The remaining question is when to stop the migration
and mark the new partition as active. This can be done
as follows. Before starting to build a new partition, the
oblivious load balancer samples a random integer from the
binomial distribution k

$← B(N, ρ), where N is the total
capacity of the ORAM, and ρ = 1

P+1 , where P denotes
the total number of active partitions across all ORAM
nodes. The goal is now to migrate k blocks to the new
partition before marking it as active. However, during the
block migration phase, blocks can be fetched from the new
partition but not evicted back to it. These blocks fetched
from the new partition during normal data accesses are

discounted from the total number of blocks migrated.
The full node join algorithm in the full version [39].

VII. EXPERIMENTAL RESULTS

We implemented ObliviStore in C#. The code base has a
total of∼ 9000 lines of code measured with SLOCCount [3].
Eliminating effects of caching. We eliminate OS-level
caching so that our experiments represent worst-case sce-
narios. Our implementation uses kernel APIs that directly
access data on the physical disks and we explicitly disable
OS-level caching for both disk reads and writes.
Warming up ORAMs. In all experiments, we warm up the
ORAMs first before taking measurements. Warming up is
achieved by always first initializing ObliviStore into a state
that it would be after O(N) accesses.

A. Single Client-Server Setting

1) Results with Rotational Hard Disk Drives: We ran
experiments with a single ORAM node with an i7-930 2.8



Ghz CPU and 7 rotational WD1001FALS 1TB 7200 RPM
HDDs with 12 ms random I/O latency [1]. To be comparable
to PrivateFS, our experiments are performed over a network
link simulated to have 50ms latency (by delaying requests
and responses). We also choose the same block size, i.e.,
4KB, as PrivateFS.

Throughput and response time. Figure 8 shows the
throughput of our ORAM against the ORAM capacity. For
a 1TB ORAM, our throughput is about 364KB/s. Figure 9
plots the response time for data requests with various ORAM
capacities. For a 1TB ORAM, our response time is about
196ms. We stress that the response time is measured under
maximum load – therefore, the response time accounts
for both the online data retrieval and the offline shuffling
overhead.

In both Figures 8 and 9, we also marked data points
for PrivateFS and PD-ORAM for comparison. For a 1 TB
ORAM, ObliviStore has about 18 times higher throughput
than PrivateFS. Note that we set up this experiment and
parameters to best replicate the exact setup used in the
PrivateFS and PD-ORAM experiments [47].

Small number of seeks. Our optimizations for reducing
disks seeks (see full version [39]) help greatly in achieving
(relatively) high performance. Figure 16 plots the average
number of seeks per ORAM operation. At 1TB to 10TB
ORAM capacities, ObliviStore requires under 10 seeks per
ORAM operation on average.

Effect of network latency. In Figures 10 and 14, we
measure the throughput and latency of a 1 TB ObliviS-
tore ORAM under different network latencies. The results
suggest that for rotational hard drives, the throughput of
ObliviStore is almost unaffected until about 1 second of
network latency. To obtain higher throughput beyond 1s
network latency, we can increase the level of parallelism
in our implementation, i.e., allowing more concurrent I/Os
– but this will lead to higher response time due to increased
queuing and I/O contention.

The response time of ObliviStore (single node with 7
HDDS) is consistently 140ms to 200ms plus the round-trip
network latency. The additional 140ms to 200ms is due to
disk seeks, request queuing, and I/O contention.

2) Results with Solid State Drives: Even though our
implementation makes a lot of progresses in reducing disk
seeks, there are still about 4 to 10 seeks per ORAM operation
on average (Figure 16). Solid state drives (SSDs) are known
to perform much better with seek intensive workloads, but
are also currently more expensive per GB of storage than
HDDs. To compare HDD and SSD storage, we repeated the
experiments of Section VII-A with 2 x 1TB solid state drives
on Amazon EC2 using a hi1.4xlarge VM instance.

The results are shown in Figures 11, 12, and 13. In
comparison, the throughput of ObliviStore with 2 SSDs of
storage is about 6 to 8 times faster than with 7 HDD. For

a typical 50ms network link, the response time with SSD
storage is about half of that with HDD storage.
HDDs or SSDs? Our experiments suggest that roughly 21 to
28 HDDs can achieve the same throughput as a single SSD.
Since the SSDs used in the experiment are about 20 times
more expensive than the HDDs, for a fixed throughput, SSDs
are slightly cheaper than HDDs. On the other hand, HDDs
are about 20 times cheaper per unit of capacity. Under a
typical 50ms network latency, SSDs halve the response time
in comparison with HDDs.

B. Distributed Setting

We measure the scalability of ObliviStore in a distributed
setting. We consider a deployment scenario with a dis-
tributed TCB in the cloud. We assume that the TCB is
established through techniques such as Trusted Computing,
and that the TCB is running on a modern processor. How
to implement code attestation to establish such a distributed
TCB has been addressed in orthogonal work [26, 27, 32, 33],
and is not a focus of this evaluation.

For the distributed SSD experiments, each ORAM node
was a hi1.4xlarge Amazon EC instance with 2x1TB SSDs
of storage directly attached, and the load balancer ran on
a cc1.4xlarge instance. Although our instances have 60GB
of provisioned RAM, our implementation used far less
(under 3 GB per ORAM node, and under 3.5 GB for the
load balancer). The load balancer and the ORAM nodes
communicate through EC2’s internal network (under 5ms
network latency).

Figure 15 suggests that the throughput of ObliviStore
scales up linearly with the number of ORAM nodes, as
long as we do not saturate the network. The total bandwidth
overhead between the oblivious load balancer and all ORAM
nodes is 2X, and we never saturated the network in all
our experiments. For example, with 10 ORAM nodes and
4KB block size, the ORAM throughput is about 31.5 MB/s,
and the total bandwidth between the load balancer and
all ORAM nodes is about 63 MB/s. We also measured
that ObliviStore’s response time in the distributed setting is
about 60ms for 4KB blocks and is mostly unaffected by the
number of nodes (detailed results in the full version [39]).

The throughput of ObliviStore using HDD storage (also
tested on Amazon EC2) similarly scales linearly with the
number of nodes. Please refer to full version [39] for the
concrete results.

C. I/O Bottleneck Analysis

I/O overhead. ObliviStore incurs about 40X-50X I/O over-
head under parameters used in our experiments, i.e., to
access one data block, on average 40-50 data blocks need
to be accessed. Though this seems high, under the amount
of ORAM capacity and private memory considered in this
paper, the SSS scheme (what we implement) seems to
achieve the lowest I/O overhead (absolute value instead of



Figure 8: ObliviStore throughput with 7
HDDs. Experiment is performed on a single
ORAM node with the following parameters:
50ms network latency between the ORAM
node and the storage, 12ms average disk
seek latency, and 4KB block size.

Figure 9: ObliviStore response time with
7HDDs. Experiment is performed on a sin-
gle ORAM node with the following param-
eters: 50ms network latency between the
ORAM node and the storage, 12ms average
disk seek latency, and 4KB block size.

Figure 10: Effect of network latency on
throughput with 7HDDs. Experiment is
performed on a single ORAM node with 7
HDDs, 12ms average disk seek latency, and
4KB block size.

Figure 11: ORAM throughput v.s. vari-
ous ORAM capacities with 2SSDs. The
experiments are performed in a single client,
single server setting with a simulated 50ms
network link, and 2 SSDs attached to the
server. Block size is 4KB.

Figure 12: ORAM response time v.s. var-
ious ORAM capacities with 2SSDs. The
experiments are performed in a single client,
single server setting with a simulated 50ms
network link, and 2 SSDs attached to the
server. Block size is 4KB.

Figure 13: Effect of network latency on
throughput with 2 SSDs. Experiment is
performed on a single ORAM node with 2
SSDs and 4KB block size.

Figure 14: Effect of network latency on
response time. Experiment is performed on
a single ORAM node with 7 HDDs (12ms
average seek latency), and again with 2
SSDs. Block size = 4KB. The ideal line
represents the roundtrip network latency.

Figure 15: Scalability of ObliviStore in
a distributed setting. 1 oblivious load
balancer, 2 SDDs attached to each ORAM
node. Throughput is the aggregate ORAM
throughput at the load balancer which dis-
tributes the load across all ORAM nodes.

Figure 16: Average number of seeks
of ObliviStore per ORAM operation.
Includes all I/O to storage (reads and
writes/shuffles). Experiment is performed on
a single ORAM node with 4KB block size.

asymptotics) among all known ORAM schemes. Therefore,
this is essentially the cost necessary to achieve the strong
security of ORAM.

In comparison, PrivateFS should have higher I/O overhead
– our I/O overhead is O(logN) with a constant under
2, while theirs is O((logN)(log logN)2) [6]. This means
that when network bandwidth is the bottleneck, PrivateFS

achieves lower ORAM throughput than ObliviStore.

In our open source release, we will also implement the
matrix compression optimization technique [40], which will
further reduce the I/O overhead by a factor of 2.

Bottleneck analysis for various deployment scenarios.
The I/O overhead means that for every 1MB/s ORAM
throughput, we require about 40MB/s - 50MB/s throughput



on 1) AES computation, 2) total disk I/O bandwidth, and 3)
total network bandwidth between ORAM nodes and disks.

Depending on the deployment scenario, one of the above
three factors will hit bottleneck, which will become the main
constraint on the ORAM throughput.

For the hybrid cloud setting, our experiments show that
the network bandwidth between the private and public
cloud is likely to be the bottleneck. For example, assuming
a 1Gbps link between the private and public cloud, the
network will become a bottleneck with a single ORAM node
with 2 SSD drives – at the point of saturation, we would
achieve roughly 25Mbps (or 3MB/s) ORAM throughput.

For the trusted hardware in the cloud scenario, assume
that SSD drives are directly attached to ORAM nodes, and
that the distributed TCB is running on modern processors
(e.g., using Trusted Computing to establish a distributed
TCB in the cloud)1. In this case, the bottleneck is likely
to be disk I/O, since the total amount of data transferred
between the oblivious load balancer and the ORAM nodes is
relatively small, whereas the provisioned network bandwidth
between them is large. Specifically, under our setup where
each ORAM node has 2SSDs directly attached, suppose the
network bandwidth is Zbps shared amongst the oblivious
load balancer and all ORAM nodes, we can support roughly
20Z ORAM nodes before the network starts to be saturated.
The total ORAM throughput should be 3.2yMB/s, where
y < 20Z is the total number of ORAM nodes.

Our experiments suggest that computation is not the
bottleneck when ORAM client algorithms (including the
oblivious load balancer and the ORAM node algorithms)
are run on a modern processor.

D. Applications

Oblivious file system. Using NBD (short for Network Block
Device), we mounted the EXT4 File System on top of
our ORAM (a single host with a single SSD). On top of
this oblivious file system, we achieved average read/write
throughput of roughly 4MB/s. For metadata operations, it
took 2.1− 3.5 seconds to to create and delete 10,000 files.
How to hide the number of accesses (e.g., depth of directory)
is our future work.

E. Comparison with Related Work

The most comparable work is PrivateFS (PD-ORAM) by
Williams et. al. [47]. Other than ObliviStore, PrivateFS is
the most efficient ORAM implementation known-to-date.
PrivateFS also propose a novel algorithm for multiple clients
to share the same ORAM, while communicating amongst
each other using a log on the server side.

Lorch et. al. also implement ORAM in a distributed data
center setting [25]. They are the first to actually implement

1For off-the-shelf secure co-processors such as IBM 4768, chip I/O and
computation will be the main bottlenecks, as demonstrated by Lorch et.
al. [25]. See Section VII-E for more details).

ORAM on off-the-shelf secure co-processors such as SLE 88
and IBM 4768, and therefore can achieve physical security
which off-the-shelf trusted computing technologies (e.g,
Intel TXT and AMD SVM) do not provide. On the other
hand, their implementation is constrained by the chip I/O,
computational power, and memory available in these secure
co-processors. Lorch et. al. performed small-scale exper-
iments with a handful of co-processors, and projected the
performance of their distributed ORAM through theoretic
calculations. Their work suggests that for ORAM to become
practical in large-scale data centers, we need more powerful
processors as part of the TCB. One way is to rely on Trusted
Computing – although this does not offer physical security, it
reduces attack surface by minimizing TCB such that formal
verification may be possible. It is also conceivable that more
powerful secure co-processors will be manufactured in the
future [12]. Iliev and Smith also implemented an ORAM
algorithm to create a tiny TCB [19] with secure hardware.

Table IV compares our work against related works. As
mentioned earlier, since the work by Shroud [25] is less com-
parable, below we focus on comparing with PrivateFS [47].
The table suggests that on a single node with 7HDDs and
under the various parameters used in the experiments, 1)
ObliviStore achieves an order of magnitude higher through-
put than PrivateFS; and 2) ObliviStore lowers the response
time by 5X or more. Although we do not have access
to their implementation, we conjecture that the speedup
is partly due to the reduced number of disk seeks in our
implementation (Figure 16, Section VII). Disk seeks are
the main bottleneck with HDDs as the storage medium,
since ORAM introduces a considerable amount of random
disk accesses. While both schemes have O(logN) seeks in
theory [6], ObliviStore is specifically optimized to reduce
the number of seeks in practice. It is also likely that our im-
plementation benefits from a finer granularity of parallelism,
since we rely on asynchronous I/O calls and build our own
optimized event scheduler. In comparison, PrivateFS uses
multiple synchronous threads to achieve parallelism. Below
are some additional remarks about the comparison between
ObliviStore and PrivateFS:
• For ObliviStore, all HDD experiments consume under 30

MB/s (i.e., 240Mbps) network bandwidth (in many cases
much less) – hence we never saturate a 1Gbps network
link.

• For our HDD experiments, we had several personal
communications [6] with the authors of PrivateFS to
best replicate their experimental setup. Our disks have
similar performance benchmarking numbers as theirs
(approximately 12ms average seek time). We have also
chosen our network latency to be 50ms to replicate their
network characteristics. Both PrivateFS (PD-ORAM) and
ObliviStore run on similar modern CPUs. Our experi-
ments show that CPU is not the bottleneck – but disk I/O
is. The minor difference in the CPU is not crucial to the



Scheme Processors Deployment
scenario

Methodology Bottleneck

Shroud [25] secure co-processors Trusted hard-
ware in cloud

experiments and the-
oretic projection

chip I/O, computation power, and
memory of secure co-processors

PrivateFS (PD-ORAM) [47] modern CPUs hybrid cloud experiments Disk I/O or Network I/O
ObliviStore modern CPUs both experiments Disk I/O or Network I/O

Table III: Comparison of experimental setup.

Scheme
Experimental setup Results

block size ORAM capacity processors private RAM consumed response time throughput

Secure co-processors (IBM 4764), distributed setting
Shroud [25] 10 KB 320 TB 10,000* 300 GB 360 ms 28 KB/s

7 HDDs, 50ms network latency to storage, 12ms disk seek latency, single modern processor (client-side)

PrivateFS‡ [6, 47] 4 KB 100MB 1 < 2 GB † >1s†
110 KB/s†

(peak performance [6])
PD-ORAM‡ [47] 10 KB 13 GB 1 < 2 GB† >1s 15 KB/s

ObliviStore 4 KB 0.46 GB 191 ms 757 KB/s
PrivateFS‡ [6, 47] 4 KB 1 TB 1 < 2 GB† >1s 20 KB/s†

ObliviStore 4 KB 2.3 GB 196 ms 364 KB/s

Distributed setting, 20 SSDs, 11 modern processors
1 oblivious load balancer + 10 ORAM nodes (each with 2SSDs directly attached)

ObliviStore 4 KB 3 TB 11 36 GB 66 ms 31.5 MB/s
ObliviStore 16 KB 3 TB 11 33 GB 276 ms 43.4 MB/s

Table IV: Comparison with related work.
Throughput means average total throughput measured after warming up the ORAM (i.e., the ORAM is in a state that it would be after
O(N) accesses, where N is the ORAM capacity), unless otherwise indicated.
†: These numbers obtained through personal communication [6] with the authors of PrivateFS [47]. PrivateFS reports the amount of private
memory provisioned (instead of consumed) to be 2GB.
‡: Based on personal communication with the authors, the PrivateFS paper has two sets of experiments: PD-ORAM experiments and
PrivateFS experiments. Based on our understanding: i) PD-ORAM seems to be an older version of PrivateFS; and ii) the experimental
methodology for these two sets of experiments are different.
*: Based on a combination of experimentation and theoretic projection. Due to the constrained I/O bandwidth and computational power
of IBM 4768 secure co-processors, unlike PrivateFS and ObliviStore, Shroud [25] is mainly constrained by the chip I/O, computational
power, and memory available on these off-the-shelf secure co-processors.

performance numbers for ObliviStore.
• PrivateFS also experimented with faster disks, i.e., six

0.4TB 15K RPM SCSI (hardware RAID0) disks. They
report a 2X speedup with these faster HDDs due to the
superior seek time on these drives. We were not able to
obtain the same disks for our experiments, but since disk
seek is our main bottleneck with the HDD experiments,
we expect to see a similar speedup with these faster disks.

VIII. RELATED WORK

Oblivious RAM: theory. Oblivious RAM was first pro-
posed by Goldreich and Ostrovsky [14]. They propose a
seminal hierarchical construction with O((logN)3) amor-
tized cost, where N denotes the storage capacity of the
ORAM. This means that to access a block, a client needs
to access O((logN)3) blocks on average to mask from the
server the true block of intent. Since then, a line of research
has been dedicated to ORAM [9, 11, 13–16, 18, 23, 28,
29, 31, 43, 44, 46], most of which build on top of and

improve the original hierarchical construction by Goldreich
and Ostrovsky [14]. Recently, researchers have proposed a
new paradigm for constructing ORAM [35, 40]. By relying
on secure partitioning, this new paradigm breaks an ORAM
into smaller instances, therefore reducing data shuffling (i.e.,
oblivious sorting) overhead [40] or completely eliminating
oblivious sorting [35]. Constant round-trip ORAMs have
been studied in seminal works by Goodrich et. al. [17] and
Williams et. al. [45].

Oblivious RAM: bridging theory and practice. Willams,
Sion et. al. have been pioneers in bridging the theory and
practice of ORAM [43, 46, 47]. Goodrich, Mitzenmacher,
Ohrimenko, Tamassia et. al. [17, 18] have also made sig-
nificant contributions to bridging the theory and practice of
ORAM.

Backes et. al. [8] use a combination of the binary-
tree ORAM [35] and trusted hardware to build privacy-
preserving behavioral advertising applications. They demon-
strated a request latency of 4 to 5 seconds under rea-



sonable parametrization. However, their implementation is
synchronous and all operations are blocking and sequen-
tialized. Backes et. al. reported only latency results, but
no throughput results. Their request latency can be broken
down into an online latency of 750ms for fetching data from
ORAM, and an offline latency of ∼ 4s for data shuffling.

The most closely related works are the independent works
by Williams et. al. [47] (i.e., PrivateFS and PD-ORAM) and
Lorch et. al. [25]. We refer the readers to Section VII-E for
a detailed comparison of these works and ours.

ACKNOWLEDGMENTS

We gratefully acknowledge Dawn Song and Bobby Bhat-
tacharjee for their kind support, Dustin Schnaitman from
Amazon for helping us acquire resources, and Jonathan
Dautrich for helping clarify the pseudocode. We are indebted
to Radu Sion, Peter Williams, Jay Lorch, and Bryan Parno
for patiently discussing the details of PrivateFS/Shroud with
us, so we can make an informed comparison. We would
also like to thank the anonymous reviewers for their in-
sightful comments and suggestions. This material is partially
supported by the National Science Foundation Graduate
Research Fellowship under Grant No. DGE-0946797, and by
the DoD National Defense Science and Engineering Grad-
uate Fellowship. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
funding agencies.

REFERENCES
[1] http://www.storagereview.com/php/benchmark/suite v4.php?typeID=

10&testbedID=4&osID=6&raidconfigID=1&numDrives=1&devID
0=368&devCnt=1.

[2] IBM 4764 PCI-X cryptographic coprocessor (PCIXCC). http://
www-03.ibm.com/security/cryptocards/pcixcc/overview.shtml.

[3] Sloccount. http://www.dwheeler.com/sloccount/.
[4] Ssd adoption in the real world. http://esj.com/blogs/

enterprise-insights/2012/08/ssd-adoption.aspx.
[5] Trusted computing group. http://www.trustedcomputinggroup.org/.
[6] Personal communication with Radu Sion and Peter Williams., Nov.

2012.
[7] D. Asonov and J.-C. Freytag. Almost optimal private information

retrieval. In PET, 2003.
[8] M. Backes, A. Kate, M. Maffe, and K. Pecina. Obliviad: Provably

secure and practical online behavioral advertising. In S & P, 2012.
[9] D. Boneh, D. Mazieres, and R. A. Popa. Remote oblivious storage:

Making oblivious RAM practical. Manuscript, http://dspace.mit.edu/
bitstream/handle/1721.1/62006/MIT-CSAIL-TR-2011-018.pdf, 2011.

[10] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka,
and J. Molina. Controlling data in the cloud: outsourcing computation
without outsourcing control. In CCSW, 2009.

[11] I. Damgård, S. Meldgaard, and J. B. Nielsen. Perfectly secure
oblivious RAM without random oracles. In TCC, 2011.

[12] C. W. Fletcher, M. v. Dijk, and S. Devadas. A secure processor
architecture for encrypted computation on untrusted programs. In
STC, 2012.

[13] O. Goldreich. Towards a theory of software protection and simulation
by oblivious RAMs. In STOC, 1987.

[14] O. Goldreich and R. Ostrovsky. Software protection and simulation
on oblivious RAMs. J. ACM, 1996.

[15] M. T. Goodrich and M. Mitzenmacher. Privacy-preserving access of
outsourced data via oblivious RAM simulation. In ICALP, 2011.

[16] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia.
Oblivious RAM simulation with efficient worst-case access overhead.
In ACM Cloud Computing Security Workshop (CCSW), 2011.

[17] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia.
Practical oblivious storage. In CODASPY, 2012.

[18] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia.
Privacy-preserving group data access via stateless oblivious RAM
simulation. In SODA, 2012.

[19] A. Iliev and S. Smith. Towards tiny trusted third parties. Technical
report, 2005.

[20] A. Iliev and S. W. Smith. Protecting client privacy with trusted
computing at the server. IEEE Security and Privacy, 3(2):20–28,
Mar. 2005.

[21] M. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure
on searchable encryption: Ramification, attack and mitigation. In
Network and Distributed System Security Symposium (NDSS), 2012.

[22] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood. sel4: formal verification of an os kernel.
In SOSP, 2009.

[23] E. Kushilevitz, S. Lu, and R. Ostrovsky. On the (in)security of hash-
based oblivious RAM and a new balancing scheme. In SODA, 2012.

[24] J. Liedtke. On micro-kernel construction. In SOSP, 1995.
[25] J. R. Lorch, B. Parno, J. W. Mickens, M. Raykova, and J. Schiffman.

Shroud: Ensuring private access to large-scale data in the data center.
FAST, 2013:199–213, 2013.

[26] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. D. Gligor, and
A. Perrig. Trustvisor: Efficient TCB reduction and attestation. In S
& P, 2010.

[27] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H. Isozaki.
Flicker: An execution infrastructure for TCB minimization. In
EuroSys, 2008.

[28] R. Ostrovsky. Efficient computation on oblivious RAMs. In ACM
Symposium on Theory of Computing (STOC), 1990.

[29] R. Ostrovsky and V. Shoup. Private information storage (extended
abstract). In STOC, pages 294–303, 1997.

[30] D. Perry. SSD prices falling faster than
HDD prices. http://www.tomshardware.com/news/
ssd-hdd-solid-state-drive-hard-disk-drive-prices,14336.html, 2011.

[31] B. Pinkas and T. Reinman. Oblivious RAM revisited. In CRYPTO,
2010.

[32] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and
implementation of a TCG-based integrity measurement architecture.
In USENIX Security Symposium, 2004.

[33] N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu. Policy-sealed
data: a new abstraction for building trusted cloud services. In Usenix
Security, 2012.

[34] J. Schiffman, T. Moyer, H. Vijayakumar, T. Jaeger, and P. McDaniel.
Seeding clouds with trust anchors. In CCSW, pages 43–46, 2010.

[35] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious RAM with
O((logN)3) worst-case cost. In ASIACRYPT, pages 197–214, 2011.

[36] S. W. Smith. Outbound authentication for programmable secure
coprocessors. In ESORICS, 2002.

[37] S. W. Smith and D. Safford. Practical server privacy with secure
coprocessors. IBM Syst. J., 40(3):683–695, Mar. 2001.

[38] S. W. Smith and S. Weingart. Building a high-performance, pro-
grammable secure coprocessor. Comput. Netw., 31(9):831–860, 1999.

[39] E. Stefanov and E. Shi. ObliviStore: High performance oblivious
cloud storage. Technical report.

[40] E. Stefanov, E. Shi, and D. Song. Towards practical oblivious RAM.
In NDSS, 2012.

[41] E. Stefanov, M. van Dijk, A. Oprea, and A. Juels. Iris: A scalable
cloud file system with efficient integrity checks. In ACSAC, 2012.

[42] U. Steinberg and B. Kauer. Nova: a microhypervisor-based secure
virtualization architecture. In EuroSys, 2010.

[43] P. Williams and R. Sion. Usable PIR. In NDSS, 2008.
[44] P. Williams and R. Sion. Round-optimal access privacy on outsourced

storage. In CCS, 2012.
[45] P. Williams and R. Sion. Single round access privacy on outsourced

storage. In CCS, 2012.
[46] P. Williams, R. Sion, and B. Carbunar. Building castles out of mud:

practical access pattern privacy and correctness on untrusted storage.
In CCS, 2008.

[47] P. Williams, R. Sion, and A. Tomescu. Privatefs: A parallel oblivious
file system. In CCS, 2012.

[48] K. Zhang, X. Zhou, Y. Chen, X. Wang, and Y. Ruan. Sedic: privacy-
aware data intensive computing on hybrid clouds. In CCS, 2011.


