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ABSTRACT 
Motivation: Array comparative genomic hybridization is a quick and 
cheap method for detecting and genotyping unknown microbial iso-
lates. However, there are a fixed number of probes per array, and 
therefore the number of loci that can be targeted by a single array is 
limited. For accurate strain genotyping, an array must query a fully 
representative set of genes from the speciesʼ pan-genome. Prior 
genotyping arrays have only targeted a single strain or the con-
served sequences of gene families. 
Results: This paper presents a new probe selection algorithm 
(PanArray) that can target multiple whole genomes in a minimal 
number of probes. Unlike arrays built on clustered gene families, 
PanArray guarantees that every subsequence of the genomes is 
independently targeted by a full complement of probes, increasing 
the flexibility and accuracy of the associated comparative analysis 
and genotyping. The viability of the algorithm is demonstrated by the 
design of a 385,000 probe array that fully tiles the genomes of 20 
different Listeria monocytogenes strains at greater than two-fold 
coverage. 
Availability and Implementation: The PanArray design software is 
implemented in C++, and the PanArray source code and the L. 
monocytogenes array design are freely available upon request. 
Contact: amp@umiacs.umd.edu 

1 INTRODUCTION  
As one of their many diverse roles, DNA microarrays can be used 
to characterize both large-scale and small-scale genetic variation. 
In human cancer studies, array comparative genomic hybridization 
(aCGH) is commonly used to genotype cell lines and detect gene 
loss and copy number variations (Pinkel, et al., 1998). At a finer 
resolution, microarrays are also used to detect single nucleotide 
polymorphisms at targeted loci (Wang, et al., 1998). In addition to 
human screens, microarrays have been widely used for the detec-
tion and genotyping of microbial species. Notably, a viral genotyp-
ing microarray (Wang, et al., 2002) was one of the methods used to 
etiologically link severe acute respiratory syndrome (SARS) to a 
novel coronavirus (Ksiazek, et al., 2003). Arrays for the detection 
and comparative analysis of bacterial genomes have also been 
developed, including arrays for Listeria monocytogenes (Borucki, 
et al., 2004; Call, et al., 2003; Doumith, et al., 2004; Volokhov, et 
al., 2002; Zhang, et al., 2003). However, these earlier, low density 
arrays did not contain enough probes to target the entire genome of 
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the bacterium, and were forced to probe only a small subset of the 
known genes. 

As the density of DNA microarrays increased, it became possi-
ble to probe the entire genome of an organism in addition to only 
specific genes. Such an array is commonly referred to as a whole-
genome tiling array (Mockler, et al., 2005). In the human genome, 
tiling arrays are designed to probe the genome at evenly spaced 
intervals. This creates an optimization problem in choosing which 
sequences should be included on the array (Bertone, et al., 2006; 
Graf, et al., 2007). To maximize the specificity of the array, repeti-
tive probes should be avoided and experimental conditions, such as 
melting temperature, equalized. In smaller, microbial genomes, 
these concerns can be largely ignored, because it is possible to 
probe every position of the genome without leaving any gaps. For 
instance, Roche NimbleGen can presently synthesize 2.1 million 
variable length probes on a single chip. For an average 2 Mbp 
sized bacterium and 50 nt probe length, this would be an equiva-
lent redundancy of about 50x—meaning that every base-pair of the 
genome could be spanned by 50 individual probes. 

Tiling arrays have traditionally been constructed from a single 
reference strain and used to locate differences contained in the 
experimental strains. However, they can only detect and analyze 
sequences similar to those included on the array, and cannot dis-
cover genes unique to the experimental strains. After the introduc-
tion of the pan-genome concept (Medini, et al., 2005; Tettelin, et 
al., 2005), it has become increasingly clear that a single microbial 
species can contain a vast genomic diversity, and it is not suitable 
to compare against only a single reference strain. The pan-genome 
hypothesis states that any given species has two sets of genes. 
First, a set of core genes present in all strains that define the spe-
cies; and second, a set of dispensable genes present in only one or 
a few of the strains that presumably mediate adaptation. A single 
genome describes the genetic material for a particular strain, but 
the pan-genome describes the genetic makeup for an entire species. 
Single reference tiling arrays cannot survey this full diversity. Ide-
ally, a genotyping array would test for the genetic material of the 
entire pan-genome and not just one particular strain. 

With the explosion in microarray densities, it is now possible to 
design pan-genome tiling arrays that contain all genetic sequence 
from the known pan-genome. The simplest strategy is to fully tile 
the genomes of each strain. However, due to similarities between 
the strains, some sequences would be tiled with excessive redun-
dancy, and this approach would be very cost ineffective. Instead, a 
pan-genome array should aim to minimize costs by using the 
minimal probe set necessary to target every gene in the pan-
genome with adequate coverage. The typical approach is to group 
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individual genes into gene families and then target only the con-
served sequences of those families (Chung, et al., 2005; Feng and 
Tillier, 2007; Willenbrock, et al., 2007). For example, Willenbrock 
et al. designed a 32 strain Escherichia coli pan-genome array by 
clustering homologous genes based on pairwise alignment similar-
ity (Willenbrock, et al., 2007). Homology was defined as gene 
alignments with an E-value < 10-5, a bitscore > 55, and alignment 
coverage of at least 50% of the gene length. For each resulting 
gene group, a consensus sequence was generated via multiple 
alignment, and probes were designed to target the most conserved 
regions of the consensus. The resulting array comprised 224,805  
probes, targeting 9,252 gene groups, with a median coverage of 27 
probes per gene group. 

Ideally, a pan-genome array would have a probe set targeting 
each functionally distinct gene family in the pan-genome. How-
ever, defining functional similarity based on alignment similarity 
has some disadvantages. First, arbitrary thresholds for homology 
must be chosen. It is unclear that the chosen sequence similarity 
thresholds will correspond with functional similarity. Secondly, 
and even if a justifiable homology threshold is available, it is un-
clear how to properly group the genes. Clustering the genes into 
homogeneous groups requires some knowledge of their functional 
role, but such information is often unavailable. Therefore, the 
“align and combine” method could inadvertently group genes with 
different functions into a single group, thereby limiting the analysis 
power of the array. Finally, because probes are only designed to 
target annotated genes, unannotated genes and transcripts will 
remain undiscovered, and any future update of the annotation will 
outdate the array. 

To address the limitations of prior pan-genome array designs, 
this paper describes an alternative approach that both minimizes 
the cost of the array and guarantees that all genes in the pan-
genome are targeted by the array. The traditional gene-centric ho-
mology clustering is abandoned in favor of a more concrete, probe-
centric approach. In addition, to circumvent annotation deficien-
cies, a whole-pan-genome tiling is designed to target all sequences, 
and not just the currently annotated genes. To summarize the new 
approach, let P be the non-redundant set of all length k subse-
quences from the entire pan-genome sequence G. For some probe 
p, let p' be its reverse complement. A candidate probe p∈P is said 
to cover a location g∈G if some subsequence of G containing g 
would effectively hybridize with p' on the array. The Pan-Tiling 
problem is to find the smallest subset H⊆P such that every location 
in the pan-genome is covered by at least x probes in H (Figure 1). 

The probe-centric formulation of the Pan-Tiling problem has 
two primary advantages. First, because it is unbiased with regard to 
genes, it overcomes deficiencies in the annotation and can be ap-
plied to draft genomes lacking annotation. New annotations can 
simply be remapped to the probes, without having to redesign the 
array. Secondly, covering every location of the pan-genome by-
passes the problem of defining homologous gene sets—every gene 
from every strain is fully tiled with probes. Constructing a full 
tiling of the pan-genome seems like it would require a large num-
ber of probes, but by leveraging the similarities between strains 
and the non-specific nature of hybridization, a probe set can be 
constructed that fully covers a large pan-genome with adequate 
redundancy. The key to this strategy is choosing probes that will 
hybridize to as many of the strains in the species as possible, while 

using unique probes only when necessary to tile strain-specific 
sequences. 

The methods presented in this paper were developed to aid the 
design of a pan-genome CGH tiling array for Listeria monocyto-
genes. L. monocytogenes is the causative agent of listeriosis and is 
a NIAID category B biodefense agent. It is particularly trouble-
some to the food industry because it is widely present in plant, soil, 
and water samples, and can grow at chill temperatures in common 
foods such as meats, dairy products, and seafood (Farber and 
Peterkin, 1991). L. monocytogenes is particularly well suited for 
pan-genome array design because there are a remarkable number 
of strains that have been sequenced. At the time of chip design, a 
total of 20 L. monocytogenes genome sequences were available 
(Table 1). The species can be divided into three primary lineages, 
with the sequencing effort targeting mostly lineage I and lineage II 
strains. The sequence conservation between the sequenced strains 
is not exceptional, and ranges between 94% and 99% nucleotide 
identity versus the reference EGD-e strain. The pan-genome CGH 
array described in the Results section was successfully constructed 
from this diverse gamut of strains. 

2 METHODS 
The general strategy of the PanArray design algorithm is best summarized 
by an analogy to the well-known Set Cover and Hitting Set problems in 
computer science. Let P be a set of n points and F = {P1, P2, …, Pm} be a 
family of m subsets of P. Hitting Set is the problem of selecting the mini-
mum subset H⊆P such that every set in F contains at least one element of 
H. Set Cover is the well-known dual of this problem. Although Hitting Set 
and Set Cover are known to be NP hard problems, a polynomial-time 
greedy algorithm is known to give essentially the best possible approxima-
tion (Feige, 1998; Johnson, 1973). 

To see the similarities between the Pan-Tiling and Hitting Set problems, 
let the sequence G be a concatenation of all the genomes from a pan-
genome, and let S = {s1, s2, …, sm} be the set of m intervals that results from 
segmenting G into equal, length l segments. Let P be the non-redundant set 
of length k subsequences from G. A probe candidate p∈P is said to hit a 
segment s∈S if a match between p and a subsequence of G begins in the 
interval s. Let Pi⊆P be the subset of probes that hit the segment si, and F = 
{P1, P2, …, Pm} for the m segments of S. The hitting set H is the smallest 

G = 
AAAAAACCCCCCGGGGGGTTTTTT 
AAAAAACCCGCCGGGGGGTTTTAA 
AAAAAACCCCCCGGGGGGTTTTAA 

 
P = 

AAA,AAC,ACC,CCC,CCG,CGG 
GGG,GGT,GTT,TTT,CGC,GCC 

TTA,TAA 
 

H = 
AAA,CCC,GGG,TTT,GCC,TAA 

Fig. 1. Example pan-genome G made up of three miniature genomes with 
differences shown in bold. Set of all 3-mer subsequences is given by P. H 
is the minimum subset of P that tiles G at 1x coverage. If G is double 
stranded and reverse complement targets are acceptable, H = 
{AAA,CCC,GCC,TAA}. 
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possible subset H⊆P such that each Pi shares at least one element with H. 
Therefore, the solution to this Hitting Set problem is a minimum subset of 
probes H such that every segment of the pan-genome is hit by at least one 
probe in H. Therefore, the probes in H effectively tile the entire segmented 
pan-genome using a small number of probes. This Hitting Set formulation 
is not equivalent to the original Pan-Tiling problem definition, but the 
imposition of fixed segments on the pan-genome is a helpful simplification. 

2.1 Probe Indexing 
Segmenting the pan-genome sequence may prohibit finding an optimal 
solution to the Pan-Tiling problem, but it does not limit adjustments to the 
coverage of the tiling. For a segment length of l, segments are simply 
marked off every l bases of the pan-genome—with the first segment s1 
covering the interval [1, l], and the second segment s2 covering [l+1, 2l], 
and so on. Segments extending across contig boundaries are discarded. For 
a segment length l equal to the probe length k, the resulting depth of cover-
age averages 1-fold because the probes are spaced k bases apart on average. 
To adjust the resulting coverage, the fixed segment size can be modified 
beforehand and the resulting depth of coverage c is expected to be c ≈ k / l. 
The extreme case being l = 1, which results in exactly k-fold coverage 
because a probe must be selected for every position in G. 

Once the pan-genome is discretized into a set of segments, each segment 
must be mapped to the set of probes it contains. As before, a probe p hits a 
segment if a match between p and G begins within the segment’s interval. 
A match can be defined by any criteria necessary for efficient hybridiza-
tion. To help reduce probe redundancy, PanArray defines a match as a full-
length alignment with either 0 or 1 mismatches. Any suitable k-mer index-
ing algorithm can be utilized for this phase, but allowing for mismatches 
can be computationally expensive. The PanArray software uses a fast, but 

memory intensive, compressed keyword tree for indexing all probe hits. 
Alternatively, a slower, but memory efficient, hashing scheme would also 
work. To index the 1-mismatch hits, PanArray adds each probe’s 3k possi-
ble 1-mimsatch permutations to the index as well. The result of the index-
ing is a list of positions and segments for every possible probe of the pan-
genome. 

For CGH arrays, each probe is considered equivalent to its reverse com-
plement, but for expression arrays, forward and reverse strand probes must 
be considered independently. Probe matches are listed on the strand on 
which they appear, therefore the sequence to be synthesized on the array 
may need to be reverse complemented. If desired, this final list of probe 
candidates can then be filtered based on typical criterion such as melting 
temperature, GC content, repeat content, etc. If the filtering is very aggres-
sive, some segments may not contain any candidate probes and can be 
removed from further consideration. 

2.2 Probe Selection 
2.2.1 Naive Greedy Algorithm As detailed above, selecting a mini-
mum probe set for tiling S is equivalent to finding the minimum hitting set 
of P. Let a segment hit by at least one probe be termed as covered. A naive 
greedy algorithm for finding a small hitting set H is to choose, for each 
uncovered segment, a probe hitting the segment that also hits the most 
other segments. The hope being that choosing probes with the most hits 
will minimize the total number of probes necessary to cover all segments. 
As before, S is the segmented pan-genome, and Pi is the subset of probes 
that hit the segment si. Let Sp be the subset of segments hit by probe p, and 
U be the set of currently uncovered segments. 

 

Table 1. Genomic sequences included on the Listeria monocytogenes pan-genome tiling array. Sequences were obtained from GenBank and annotations 
from NMPDR and JCVI CMR. The final column shows the nucleotide identity of a whole-genome alignment versus strain EGD-e. 

Strain Lineage Serotype No. Bases  No. Contigs No. Genes EGD-e Identity 

EGD-e II 1/2a 2,944,528 1 3,002 100.00 
LO28 II 1/2c 2,910,810 529 5,078 99.30 
FSL F2-515 II 1/2a 2,586,267 1,415 NA 98.41 
FSL J2-003 II 1/2a 2,878,206 406 4,686 98.22 
1/2a F6854 II 1/2a 2,950,285 133 3,028 98.01 
FSL N3-165 II 1/2a 2,886,689 33 2,963 97.52 
J2818 II 1/2a 2,971,223 38 3,270 97.19 
F6900 II 1/2a 2,958,319 35 3,333 97.15 
J0161 II 1/2a 3,051,828 51 3,252 97.09 
10403S II 1/2a 2,866,709 32 2,944 96.90 
FSL J2-064 I 1/2b 2,899,431 327 3,914 94.69 
4b H7858 I 4b 2,972,254 181 3,187 94.54 
FSL J1-175 I 1/2b 2,902,346 357 4,559 94.49 
FSL N1-017 I 4b 2,857,865 77 3,465 94.30 
HPB2262 I 4b 3,006,068 75 3,319 94.01 
FSL J1-194 I 1/2b 2,986,227 44 3,792 93.98 
4b F2365 I 4b 2,905,187 1 2,987 93.87 
FSL R2-503 I 1/2b 3,001,696 54 4,863 93.73 
FSL J2-071 IIIA 4c 3,149,923 46 3,789 93.28 
FSL J1-208 IIIB 4a 2,260,760 1,494 NA 92.84 
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Naive Greedy Algorithm 
H = Ø 
U = S 
foreach si∈S 
 if si∈U select 

€ 

p∈Pi
argmax Sp  

  U ← U – Sp 
  H ← H ∪ {p} 
return H 

The result H is the list of probes that should be fabricated for the array. 
Note that if the number of probes in H is larger (or smaller) than desired, 
the fixed window size can be increased (or decreased) as necessary to ad-
just the density of the tiling. However, this algorithm fails to account for 
the fact that after each iteration, the effective coverage of the remaining 
probes may be reduced. This is because after selecting a probe p, all other 
probes that hit a segment in Sp will see their residual coverage reduced. 
Take for instance two probes that hit all the same segments. Choosing the 
first probe reduces the residual coverage of the second probe to zero. 

2.2.2 Greedy PanArray Algorithm The residual compilation of the 
naive algorithm is avoided by the true greedy algorithm that reconsiders the 
effective, or residual, coverage of all probes at each iteration. The full 
greedy algorithm chooses, while uncovered segments remain, the probe 
that hits the most currently uncovered segments. 

Greedy PanArray Algorithm 
H = Ø 
U = S 
while U ≠ Ø 
 select 

€ 

argmax
p∈P

Sp ∩U  

  U ← U – Sp 
  H ← H ∪ {p} 
return H 

As a downside, Greedy PanArray can be costly if the value of |Sp ∩ U| is 
recomputed for all Sp during each iteration. Because both |P| and |S| can be 
on the order of millions for a large pan-genome, recomputing the coverages 
during each iteration is infeasible. Thankfully, not all values have to be 
recomputed after each iteration. For some probe p and its corresponding 
segments Sp, let rp equal the residual coverage of p after some other probes 
have already been selected (rp = |Sp ∩ U|). Note that for any p, its residual 
coverage rp can never increase. After each iteration, a probe’s coverage 
either remains the same or decreases because one of its segments was hit by 
the prior iteration. Therefore, instead of recomputing all residuals after each 
iteration, it is sufficient to maintain a priority queue of residual coverages 
and only update values at the front of the queue. After each iteration, all 
residual coverages are invalidated. During the next iteration, new rp values 
are computed for the probes at the front of the queue and their values are 
reinserted in the queue. Often, newly computed residuals will quickly re-
turn to the head of the queue before all the invalid residuals have been 
recomputed. At this point it is unnecessary to update any other residuals 
because their new values cannot be greater than their current value. There-
fore, the head of the queue must be the maximum updated residual. This 
general strategy is often called lazy evaluation because computations are 
preformed at the last minute on only the necessary elements. This avoids 
many unnecessary computations and drastically improves the performance 
of the algorithm. 

2.3 Annotation 
The flexibility of the PanArray design algorithm is founded on its probe-
centric approach. Because it does not require any identification and cluster-
ing of genes, the design is independent of any genome annotation, and 
instead of building the annotation into the design of the array, the annota-

tion can be mapped onto the array after the design. This strategy allows for 
unannotated genomes to be included on the array and annotation updates to 
be incorporated as they become available. If the tiling covers both strands 
of the genome, the chip can also be used to search for unknown transcripts. 

Included with the final probe set H is the list of locations on the pan-
genome that each probe matches. If the genome sequence is updated, the 
location information can be easily recovered by remapping the probes to 
the genome using a matching tool such as MUMmer (Delcher, et al., 1999; 
Delcher, et al., 2002; Kurtz, et al., 2004) or Vmatch (Kurtz, 2003). To 
annotate the array, probes are mapped to all the features who’s location 
coincides their own. The result is a many-to-many mapping with each 
feature being targeted by multiple probes, and a single probe possibly tar-
geting multiple features (e.g. conserved genes between strains). 

3 RESULTS 
The PanArray algorithm described above was used to designed a 
pan-genome tiling array for the species Listeria monocytogenes. 
The design was constructed for a 385,000 feature NimbleGen array 
with a probe length of 50 nt. All 20 L. monocytogenes genomes 
listed in Table 1 were included in the design, with a combined 
sequence length of 54,810,759 bp. To avoid tiling low quality or 
contaminant sequence, contigs less than 2 Kbp in length were dis-
carded. Because the specificity of hybridization for a 50 nt probe 
cannot distinguish between a few mismatches, probes differing by 
a single mismatch were considered equivalent during the design 
phase. The segment length was set to 24 bp, which yields an ex-
pected probe coverage of about 50 / 24 = 2.08x. These parameters 
guarantee that every base-pair of the pan-genome will be covered 
by at least one probe, since the probe length is more than twice the 
segment length. 

The L. monocytogenes pan-genome sequence was divided into 
approximately 2.3 million 24 bp segments. To hit each segment, 
the PanArray algorithm selected 373,389 distinct probes mapping 
to 2,893,387 positions in the pan-genome. On average, each probe 
in the design targets about 8 different positions in the pan-genome. 
Rather than being repeated sequences within the same genome, 
these different locations most often refer to a conserved locus in 
multiple strains (Figure 2). Interestingly, the degree of probe reuse 
corresponds well with the known evolutionary relationship of the 
strains. Included on the chip are 8 genomes from lineage I, 10 from 

Fig. 2. Histogram of the number of Listeria monocytogenes genomes 
matching a single 50-mer PanArray probe with 0 or 1-mismatches. 
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lineage II, and 2 from lineage III. This would suggest that the peak 
at Genomes = 1 in Figure 2 is for strain-specific probes; the peaks 
around 2 and 9 are for lineage-specific probes; and the peak around 
20 is for species-specific probes. 

Because this is a dense tiling of the entire genome, it is unneces-
sary to optimize probes for uniqueness, as is done in standard ex-
pression arrays with only a few probes per gene. Nevertheless, it is 
recommended by array manufactures to avoid highly repetitive 
sequences. If necessary, such probes could be prescreened and 
discarded before running the PanArray algorithm. This may be 
necessary for microbial genomes with a large number of insertion 
elements, but the L. monocytogenes strains used for this array are 
not highly repetitive. The most repetitive probe used in the design 
targets a “cell wall surface anchor protein” family and occurs a 
maximum of 16 times on a single L. monocytogenes genome. In 
other cases, the relatively long 50 nt probe length assures that the 
majority of probes on the array match only a single location per 
genome. 

To augment the original PanArray design, an additional 228 
negative control probes were added to the array, chosen from Ba-
cillus spp. which is a known cohabitant of Listeria. The negative 
control probes were chosen to be specific to Bacillus spp. using the 
Insignia genomic signature design pipeline (Phillippy, et al., 2007). 
The remaining 11,838 features on the array were filled by selecting 
individual probes to supplement the lowest coverage regions of the 
design. All probes were checked to conform with NimbleGen de-
sign restraints, and a few probes were trimmed to meet synthesis 
cycle limits. The resulting L. monocytogenes pan-genome array has 
an average coverage of 2.65x, with a median probe offset of 21 bp, 
and a modal offset equal to the segment length of 24 bp. The full 
distribution of probe offsets is given in Figure 3. The heavy left tail 
suggests this may be a non-optimal solution that is slightly denser 
than expected (2.65x vs. 2.08x expected). The majority of targeted 
sequences exactly match their probe (75%) and the remainder con-
tain only a single mismatch (25%). 

The performance gain of PanArray over more naive methods is 
significant. For instance, selecting a single probe from each win-
dow requires over 2.2 million probes, some of which may be exact 
duplicates. The slightly more principled Naive Greedy chooses a 
more reasonable 1,739,242 probes, but is still well over the 

385,000 probe limit. The Greedy PanArray meets this limit and 
vastly outperforms the other methods—requiring only 373,389 
probes to cover the entire pan-genome (Figure 4). Thanks to the 
lazy evaluation speedup, the PanArray algorithm is also compara-
ble in runtime to the naive algorithm. On a single 2.4 GHz proces-
sor, the greedy algorithm without lazy evaluation never finished; 
the Naive Greedy algorithm took 29 s; and the Greedy PanArray 
algorithm took 130 s. Instead of optimization, the runtime for the 
entire design process is dominated by building the k-mer index, 
which required 84 m using the compressed keyword tree. 

Analysis of aCGH experiments is usually conducted on signal 
ratios between a reference and experimental hybridization. Dupli-
cations or deletions in the experimental samples is evident as non-
zero values of the log ratio of the two normalized signals. So called 
segmentation algorithms examine this log ratio across multiple 
positions in reference sequence to determine the boundaries of the 
variations (Olshen, et al., 2004; Willenbrock and Fridlyand, 2005). 
The most accurate methods consider not just individual probes, but 
also a context of probes from a similar genomic location. This adds 
robustness to the analysis, because a single low intensity probe is 
more likely to be an experimental error if it is flanked by high 
intensity probes. However, this analysis requires both a reference 
signal and a reference coordinate system on which the probes are 
tiled. In a pan-genome array, there is no single, linear reference 
genome and some probes will always be negative for a reference 
hybridization. This complicates segmentation analysis because the 
log ratio will be near zero when both strains do have a gene and 
when both strains do not have a gene. 

For strain genotyping, it is more informative to know what genes 
from the pan-genome are present in the experimental strain, rather 
than the differences between a single reference and experimental 
strain. For gene-level analysis, direct analysis of the individual 
probe intensities provides comparable sensitivity and specificity 
versus segmentation analysis (Willenbrock, et al., 2007). A probe-
based approach provides the most flexibility for pan-genome array 
analysis, because each probe can be individually scored based on 
its own intensity, and the genes can be classified based on the ag-
gregated scores of the individual probe scores without the need for 
a control hybridization. 

Emerging sequencing technologies promise to eventually replace 

Fig. 3. Histogram of the offsets between adjacent probe targets in the Liste-
ria monocytogenes pan-genome allowing for 0 or 1-mismatches to the 
probe. 
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aCGH with whole-genome sequencing. Until then, aCGH remains 
more economical for custom genotyping studies, such as this one, 
and copy number variation analysis (Shendure, 2008). Probe based 
methods, like microarray and PCR, are especially well suited for 
real-time pathogen detection, surveillance, and diagnostics, where 
a known sequence of DNA must be targeted from a vast environ-
ment (Phillippy, et al., 2007; Slezak, et al., 2003; Tembe, et al., 
2007). For instance, a pan-genome array could be used for the 
detection and genotyping of pathogens from a large environment, 
without needing to isolate the individual cells. It could also be used 
to capture all species specific genomic material from an environ-
ment, which could then be directly processed or sequenced sepa-
rately from the metagenome. Microarray based genomic capture 
has already been applied to targeted human resequencing as an 
efficient means of isolating desired sequencing templates (Albert, 
et al., 2007; Okou, et al., 2007; Porreca, et al., 2007). 

PanArray is a novel and efficient algorithm for designing com-
prehensive pan-genome tiling arrays. Using a probe-centric design 
approach, functional clustering pitfalls are eliminated, and every 
unique sequence of the pan-genome is guaranteed to be included 
on the chip. The pan-genome array described here is the first of its 
kind and contains the entire genetic material for 20 distinct L. 
monocytogenes strains on a single array of 385,000 probes. The 
PanArray design software, and the L. monocytogenes array design 
and annotation, are freely available upon request. 
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