
Efficient Sentiment Analysis of Feeds for Rapid User
Information Gain

R. Kent Wills
University of Maryland

College Park, MD 20742
rkw14@umd.edu

ABSTRACT
Recently my effort and attention has been focused on a start-
up that aims to bridge gaps in the financial world. Specifically
the gap of financial literacy. Throughout this exploration, one
important, recurring theme is the need for a quick assessment
of aggregate analysis. Accordingly, this document will serve
as a road map to generating quick, efficient, and accurate an-
alytics of RSS and Twitter feeds. This analysis will in turn
resolve the data to an overall sentiment of POSITIVE, NEG-
ATIVE, or NEUTRAL. This paper proposes the creation of a
production grade classifier for a website. To elaborate, pro-
duction grade should consider not only accuracy of the as-
sessment, but also speed. Many users may not use the feature
if it takes too long to load on the site, further degrading in-
teraction. Furthermore, the dichotomy of structured and un-
structured data, RSS and Twitter feeds, should provide in-
sight as to how one may be used to support the other. This
paper shows that the production grade classifier is an attain-
able goal, although may never get used effectively due to the
amount of irrelevant data.

Author Keywords
Machine Learning; Natural Language Processing; Sentiment
Analysis;

INTRODUCTION
Sentiment Analysis, determining the overall polarity of text,
has been widely explored in Natural Language Processing [6,
2, 12] and Machine Learning Fields [9]. It has been popu-
larly used for tasks ranging from brand sentiment [4] to stock
prediction in financial blogs [7]. The intentions of this pa-
per are largely practical, it wishes to explore a “good enough
classifier” that is also quick. It also attempts to explore using
parallel corpora, one with sentence structure and the other
without. Furthermore, I wish to see if the use of both corpora
will result in overall better performance.

DATA PREPARATION
Corpora generation for this paper was no small task, and as
such the next few sections will not only discuss the retrieval
of the data, but also the cleaning of the data.

Retrieval
Twitter rate limits access to their data [13], with 150 requests
per hour for unauthenticated users to 350 requests an hour
for authenticated users. Furthermore, Twitter does not allow
the storage of data on local servers with tweet id and text in
the same corpora. This has led to Twitter forcing Stanford

to take down a twitter database [10][17] of over 476 million
tweets in a seven month period. Luckily, Sander’s Analytics
has provided an offline database [1] of twitter ID’s with at-
tached sentiments. To obtain data with a minimal amount of
code, Twitterizer [14] was used. Twitterizer’s TwitterStatus
has the following useful properties:

• CreatedDate - Date for tweet

• Text - Tweet Text

• Geo - Location of tweet

• RetweetCount - Number of times the tweet was mentioned

• Retweeted - Whether this is an original or retweet.

It is interesting to note that the created date could be used to
plot sentiment over time, Geo-Location could plot sentiment
over the US, and retweet count could be used to reinforce a
sentiment for a specific company.

Building an RSS corpora resulted in a slightly different ap-
proach. Notably, the data is not strictly rate limited and can
be retrieved in XML format. C# has a great XML Document
class [5] to handle the response. The XML response contains
the following RSS data:

• Title - Title for the RSS

• Description - Short summary for the article

• Date - Date of the RSS post

• Link - Link to the article

Currently the title and description are the only tags being used
for analysis. Further development could include parsing the
document from the html link to provide a less sparse feature
vector. Drawbacks from adding extra data could include us-
ing RSS feed data more than the twitter content for prediction.
This, however, could be handled effectively by weighting the
vectors [3].

Analysis of Text
In order to properly setup the data for analysis the data must
be properly tokenized. The process of tokenizing data is de-
scribed as breaking down sentences into words. With RSS
data the tokenization is rather trivial, whereas tokenizing
tweets can be difficult at times. Take the following tweet for
example:

1

One man’s opinion: $AAPL in a Multi-Year Decline,
Shares to Fall 50-70% http://t.co/hPSEm3jN $AAPL
down 3% so far today #investing :(.

There are many elements to a tweet that could have signifi-
cance. It allows a tweet to get the maximum amount of in-
formation out in a small with the minimum amount of text.
There is a potentially huge amount of information that can be
garnered from such a small amount of text, at the cost of hav-
ing to handle many special cases. Here are a list of common
elements:

• Hashtag: The hashtag is preceded by # and it specifies the
category that the tweet belongs in. This alone can provide
valuable information to ensure that our tweet is in the do-
main that we want. The above example shows that we have
retrieved a tweet that is meant to be centered in the invest-
ing category, which is the proper domain for out task.

• Dollar Sign: A newer type of hashtag is cropping up, the $
sign. This is used to specify stock symbols, such as $AAPL
for the company Apple Inc.. This is equally helpful in de-
termining if the tweet pertains to the specific company that
we are interested in.

• @Replies and Mentions: This will simply tag a tweet as
being part of someone else’s conversation. We will be pri-
marily unconcerned with this feature. In the future we
could use this to identify whether or not the user was an
originator of the comment or idea.

• Emoticon: While not a word, an emoticon or smiley can
describe the entire sentiment of the tweet without saying a
word. :)

• Embedded links: You may have noticed the ugly web ad-
dress http://t.co/hPSEm3jN. This is a shortened hyperlink
that pertains to the tweet in order to preserve the 140 char
restriction. Currently the program does not make use of
this feature. This could be a potentially lucrative endeavor
because it may provide a link to a web page. This web
page will give us more features to use in order to classify
the overall sentiment for the tweet.

Steps to Tokenization
The following steps have been used from Christopher Potts
tokenizing techniques [8] to tokenize the twitter text.

• Basic Normalization - Isolate XML and HTML and map
HTML to unicode

• Whitespace Tokenizer - Convert to lowercase and
splits text on whitespace (ex. “AAPL is great” →
“aapl”,“is”,“great”)

• Smiley Tokenizer - Capture %96 of the emoticons used in
twitter (ex. :))

• Twitter Markup - Grab usernames and hashtags (ex. #in-
vesting)

• Shortening - Map repeating vowels of length greater to
three to three or less (ex. sweeeeeet→ sweeet)

DATA STORAGE/DATA
Storage
C# has great interoperability with SQL Databases using
EntityFramework. All data is stored in a RSS, Twitter,
and Sentiment Table for retrieval. Moreover, I can easily
randomly reserve my test data in the beginning by using the
SQL statement:

With TEST AS(
SELECT TOP 10 percent * from Twitter order by newid())
UPDATE TEST
SET Test=1

where, in this case, I chose to set aside %10 of my data for
testing.

Data
Despite the data archive claiming to have 5500 tweets, only∼
1, 400 were labeled positive and negative. To provide an even
weighting of examples I maintained∼ 700 positive, negative,
and neutral tweets. This led to a ∼ 2, 100 Tweet database.
RSS feeds were equally as bad with more than 100 of my
300 RSS feeds being marked as irrelevant. Retrieving Data
for classification was the most time consuming task for the
project and will result in not being able to use this classifier
in a commercial product.

METHODS
My method is of the supervised nature, as I am trying to learn
positive, negative, and neutral sentiments from labeled data.
Unfortunately I was not able to utilize the Accord.Net frame-
work due to data input issues. I instead, developed the fol-
lowing algorithms in C# from scratch.

Naive Bayes
Notes on Implementation
Naive Bayes is largely known for being a simple solution that
is widely used due to its performance in real world applica-
tions. In this case, while words are not independent, we can
try to assume their independence and see how well the clas-
sifier performs. Much of the Naive Bayes information came
from Stanford’s CS124 class [11]. Naive Bayes performs bet-
ter with large amounts of data. Due to a limited training set,
data was bootstrapped ten times. All for-loops were paral-
lelized as well to increase speedup in training. Finally clas-
sifiers were bagged and the mode result was taken. The fol-
lowing algorithm was used:

Algorithm 1 : Naive Bayes Train
1: N ← CountTwitter(Examples)
2: for all c ∈ C do
3: Nc = CountWordsInClass(T, c)
4: Prior[c]← Nc/N
5: Textc ← ConcatenateText(T, c)
6: W [c]← ExtractFeatures(Textc)
7: end for
8: return W

2

When classifying examples, multiplying probabilities can re-
sult in floating-point underflow, instead probabilities were
summed:

c = argmax
cj∈C

logP(cj) +
∑

w∈Words

logP(xw|cj)

Laplace smoothing [16] was applied to the above equation to
allow for nonzero probabilities of words that do not occur in
the sample.

Decision Trees
Decision trees, from a global perspective, work very similarly
to Naive Bayes, the highest frequency words are given the
most importance to separate the data. Decision trees, how-
ever, seem to be more rigid in this case, with decision being
yes or no, with no in−between. The decision tree used was
adapted from Hal Daume’s Book, CIML. The difference here
is that information gain is used instead of the mode.

Algorithm 2 : DecisionTreeTrain(Data, Remaining Features,
Height) from CIML

1: guess← mode(data)
2: if labels in data are unambiguous then
3: return Leaf(guess)
4: end if
5: if remaining features = then
6: return Leaf(guess)
7: end if
8: for all f ∈ remainingfeatures do
9: NO ← subset of data on which f = no

10: Y ES ← subset of data on which f = yes
11: score[f]← InformationGain(f)
12: end for
13: f ←MAX(score[f])
14: NO ← subset of data on which f = no
15: Y ES ← subset of data on which f = yes
16: left← DecisionTreeTrain(NO, remfeatures, height)

17: right←DecisionTreeTrain(Y ES, remfeatures, height)

18: return NODE(f, left, right)

The classification function is straightforward and recursively
iterates through the tree to find the solution.

Algorithm 3 : DecisionTreeClassify(T, TestPoint) from
CIML

1: if tree is of the form LEAF(guess) then
2: return guess
3: else
4: if f ∈ TestPoint then
5: return DecisionTreeTest(left, test)
6: else
7: return DecisionTreeTest(right, test)
8: end if
9: end if

PERFORMANCE

B-T B-R B-C D-T D-R

0

0.2

0.4

0.6

0.8

Pe
rc

en
t

Accuracy F-Score Precision Recall

The prefix in the above chart x-axis label B abbreviates the
word Bayes and D abbreviates Decision Tree. Similarly the
suffix abbreviates Twitter, RSS, and Combination as T, R and
C, respectively.

Note on measurements.
All performance results were computed based off of the F-
Score, where

FScore =
2× Precision×Recall

Precision+Recall

and

Precision =
TP

TP + FP

Recall =
TP

TP + FN

In this example, the label represents three classes, “posi-
tive, negative, and neutral” because we cannot run our tra-
ditional F-Score metric, Micro-Averaging [15] was imple-
mented. Micro-Averaging collects decisions for all classes,
computes the confusion matrix, and then is evaluated.

Training was completed on Twitter and RSS feeds separately,
then trained together. The hope was that the RSS feeds would
reinforce the overall sentiment for the companies because it
reduces the sparsity when dealing with short twitter feeds.
Unfortunately it appears that the addition of the structural
text did not provide any gains to prediction. It is also im-
portant to note that the Decision tree performs much worse
than Naive Bayes and was not tested for improvement with
RSS and Twitter feeds combined.

Because F-Score metrics alone are tough to visualize, a word
diagram was generated to give the user a sense of which
words were pulled out and used in the majority of positive
prediction tasks:

3

CONCLUSION
While it does seem that RSS feeds do reinforce the Twitter
feeds positively, limitations keep this from being a production
grade classifier. One limitation is the cap on the number of
Twitter feeds that can be downloaded an hour, a large scale
website would easily reach this cap. Many of the feeds pulled
from both twitter and RSS suffered from having too many
irrelevant examples. These irrelevant examples would have
to be filtered out of the process to get the best performance.
While the production grade classifier might not be practical
for my process, I have provided an example of the working
“split-second” classifier used on the current website.

REFERENCES
1. Analytics, S.

http://www.sananalytics.com/lab/twitter-sentiment/,
2012.

2. Choi, Y., Kim, Y., and Myaeng, S.-H. Domain-specific
sentiment analysis using contextual feature generation.
In Proceedings of the 1st International CIKM Workshop
on Topic-sentiment Analysis for Mass Opinion, TSA
’09, ACM (New York, NY, USA, 2009), 37–44.

3. Gao, C., Sang, N., and Tang, Q. On selection and
combination of weak learners in adaboost. Pattern
Recogn. Lett. 31, 9 (July 2010), 991–1001.

4. Ghiassi, M., Skinner, J., and Zimbra, D. Twitter brand
sentiment analysis: A hybrid system using n-gram
analysis and dynamic artificial neural network. Expert
Syst. Appl. 40, 16 (Nov. 2013), 6266–6282.

5. Microsoft. http://msdn.microsoft.com/en-
us/library/system.xml.xmldocument.aspx,
2012.

6. Nasukawa, T., and Yi, J. Sentiment analysis: Capturing
favorability using natural language processing. In
Proceedings of the 2Nd International Conference on
Knowledge Capture, K-CAP ’03, ACM (New York, NY,
USA, 2003), 70–77.

7. O’Hare, N., Davy, M., Bermingham, A., Ferguson, P.,
Sheridan, P., Gurrin, C., and Smeaton, A. F.
Topic-dependent sentiment analysis of financial blogs.
In Proceedings of the 1st International CIKM Workshop
on Topic-sentiment Analysis for Mass Opinion, TSA
’09, ACM (New York, NY, USA, 2009), 9–16.

8. Potts, C.
http://sentiment.christopherpotts.net/tokenizing.html,
2012.

9. Shamshurin, I. Data representation in machine
learning-based sentiment analysis of customer reviews.
In Proceedings of the 4th International Conference on
Pattern Recognition and Machine Intelligence,
PReMI’11, Springer-Verlag (Berlin, Heidelberg, 2011),
254–260.

10. Stanford. http://snap.stanford.edu/data/twitter7.html,
2012.

11. Stanford. http://www.stanford.edu/class/cs124/, 2012.

12. Thet, T. T., Na, J.-C., Khoo, C. S., and Shakthikumar, S.
Sentiment analysis of movie reviews on discussion
boards using a linguistic approach. In Proceedings of the
1st International CIKM Workshop on Topic-sentiment
Analysis for Mass Opinion, TSA ’09, ACM (New York,
NY, USA, 2009), 81–84.

13. Twitter. https://dev.twitter.com/docs/rate-limiting, 2012.

14. Twitterizer. http://www.twitterizer.net/, 2012.

15. Wikipedia.
http://datamin.ubbcluj.ro/wiki/index.php/evaluation methods in text categorization,
2012.

16. Wikipedia.
http://en.wikipedia.org/wiki/additive smoothing, 2012.

17. Yang, J., and Leskovec, J. Patterns of temporal variation
in online media. In Proceedings of the Fourth ACM
International Conference on Web Search and Data
Mining, WSDM ’11, ACM (New York, NY, USA,
2011), 177–186.

4

	Introduction
	Data Preparation
	Data Storage/Data
	Methods
	Naive Bayes
	Decision Trees

	Performance
	Conclusion
	REFERENCES

